容器體積的校正

- 國立臺灣大學化學系,大學化學實驗一暨實驗二,第二版,國立臺灣大學出版中心: 台北,民國九十五年。
- 版權所有,若需轉載請先徵得同意;疏漏之處,敬請指正。
- 臺大化學系普化教學組葉芝嵐助教、佘瑞琳講師,2009年3月10日。
- 一、目的:校正在某固定溫度下,容量瓶、吸液管及滴定管的刻度。
- 二、實驗技能:學習稱量、容量瓶、吸液管及滴定管之使用與校正。

三、原理:

實驗室中,經常會使用到一些玻璃度量儀器,以準確量測液體體積。這些度量儀器通常在其器皿上標示著校正時的溫度(如 20℃)和容積(如 10 mL),及依使用方式,又有 TC(To Contain,如容量瓶)及 TD(To Deliver,如吸量管)兩類標示。當進行精密測量,需要準確度量液體體積時,應先查驗這些容積儀器的準確性,若其容積與刻劃標線不一致時應進一步校正之。一般校正的方法是利用容器內所盛裝液體的重量及密度換算爲體積,以校正容器之體積。以純水爲例,純水在一大氣壓及 4℃時,其密度爲 1.00000 g/cm³,因此在這條件下,某容積儀器內的純水重量等於純水的體積。但是一般的實驗並非在 4℃下進行,故在校準容器體積時,需考慮下列三項體積變異因素:一爲液體密度在不同溫度下的增減,二爲容器材料在不同溫度下的膨脹或收縮,三爲溫度變化時空氣對水和砝碼的浮力改變。考慮以上的體積變異因素,得到在不同溫度下 1 g 純水的體積及對照爲 20℃ 時之體積,如表 1 所列。

在本實驗中學習利用水的體積、密度與重量三者的關係,首先將 100 mL 容量瓶及 25 mL 吸液管之正確刻度標線位置找出,重新劃記在器壁上所黏貼的方格紙上。至於滴定管的校正,則是找出滴定管體積讀值與校正誤差值之關係曲線,爾後當使用滴定管時,將其滴定刻度讀值加上其校正誤差值即爲真實體積。今以下述範例說明。

表 1 一大氣壓不同溫度下 1g 水的體積

水溫,T	T℃,1g水之體積	修正至 20℃時
$(^{\circ}\!\mathbb{C})$	(mL)	1g水的體積(mL)
10	1.0013	1.0016
11	1.0014	1.0016
12	1.0015	1.0017
13	1.0016	1.0018
14	1.0018	1.0019
15	1.0019	1.0020
16	1.0021	1.0022
17	1.0022	1.0023
18	1.0024	1.0025
19	1.0026	1.0026
20	1.0028	1.0028
21	1.0030	1.0030
22	1.0033	1.0032
23	1.0035	1.0034
24	1.0037	1.0036
25	1.0040	1.0037
26	1.0043	1.0041
27	1.0045	1.0043
28	1.0048	1.0046
29	1.0051	1.0048
30	1.0054	1.0052

註:使用不鏽鋼的標準砝碼與抗熱玻璃器皿所量得之結果

範例:

若在 26°C下進行 50 mL 滴定管之校正,滴定管初體積之讀值為 0.03 mL,經滴放約 10 mL 純水後,滴定管終體積之讀值為 10.04 mL,稱量所得水重為 9.991 g,對照表 1,則此 9.991 g 之水於 26°C下之體積為 10.03 mL(1.0043×9.991);換算為 20°C水之真實體積應為 10.03 mL(1.0041×9.991),與滴定體積讀值 10.01 mL(10.04-0.03)比較,其體積之校正誤差值應為+0.02 mL。第二次重複試驗(duplicate)得到之體積校正誤差值為+0.04 mL,則平均校正誤差值為+0.03 mL。

項目	第一次試驗	第二次試驗
終體積 (V _f , mL)	10.04	10.01
初體積 (V _i , mL)	0.03	0.03
滴定體積讀値($V_f - V_i$, mL)	10.01	9.98
26℃水質量 (g)	9.991	9.984
校正爲20℃水之真實體積(mL)	10.03	10.02
校正誤差値(ΔV, mL)	+0.02	+0.04
平均校正誤差値 (mL)	+1	0.03

重複進行 $10\sim20$ 、 $20\sim30$ 、 $30\sim40$ 、 $40\sim50$ mL 各區間之體積校正如表 2 所示。二重複試驗之平均値與累積總校正誤差値,如表 3 所示。

表 2 以 26℃水校正滴定管至 20℃時體積之實驗結果表例

測量區間	滴定管	滴定體積	總重量	重量差	20℃下	校正誤差
	讀值	讀值	W	$\Delta \mathrm{W}$	真實體積	値 ΔV
	V(mL)	V_{f} - V_{i} (mL)	(g)	(g)	(mL)	(mL)
開始	0.03		36.430			
0~10	10.04	10.01	46.421	9.991	10.03	+ 0.02
10~20	20.01	9.97	56.379	9.958	10.00	+ 0.03
20~30	30.01	10.00	66.357	9.978	10.02	+ 0.02
30~40	39.98	9.97	76.278	9.921	9.96	- 0.01
40~50	50.00	10.02	86.289	10.01	10.05	+ 0.03

表 3 滴定管的校正表例

校正區間	第一次校正誤差	第二次校正誤差	平均校正誤差	總校正誤差
	$\Delta V_{1}(mL)$	$\Delta V_2(mL)$	$\Delta V(mL)$	$\Sigma \Delta V(mL)$
0~10	+ 0.02	+ 0.04	+ 0.03	+ 0.03
10~20	+ 0.03	+ 0.04	+ 0.04	+ 0.07
20~30	+ 0.02	+ 0.04	+ 0.03	+ 0.10
30~40	- 0.01	- 0.03	- 0.02	+ 0.08
40~50	+ 0.03	+ 0.01	+ 0.02	+ 0.10

總校正誤差爲該區間與其上各區間之各別平均校正誤差之和。最後以總校正誤差值 爲 y 軸,滴定管之體積爲 x 軸作圖,即得此滴定管之校正曲線,如圖 1 所示。

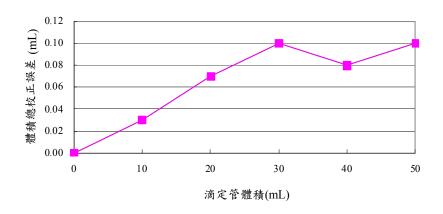


圖 1 滴定管體積校正曲線

當使用這支滴定管進行滴定時,若初讀數及終讀數分別為 10.21 及 24.50 mL,則由 圖 1 所求得之校正後之體積表列如下:

滴定管體積讀數	總校正誤差値	校正後之體積
10.21	+ 0.03	10.24
24.50	+ 0.08	24.58

滴定體積 = 24.58 - 10.24 = 14.34 mL

四、儀器與材料:容量瓶(100 mL)、方格紙、吸液管(25 mL)、透明膠帶、滴定管(25 mL)、剪刀、燒杯(100、600 mL)、安全吸球、125 mL錐形瓶及軟木塞(2組)、溫度計、吹風機、分析天平、滴管、漏斗。

五、藥品:丙酮(CH3COCH3,料潤洗用,裝洗瓶中共用)

六、實驗步驟:

	步驟	示範	
1	以 600 mL 燒杯裝取一杯蒸餾水,待其液溫 與室溫平衡後量測並記錄水溫備用(此為表 1 之水溫 T)。	3-Y1 00 300 300 300 300	

(一)容量瓶的校正

清洗乾淨一支 100 mL 容量瓶並適度乾燥 之。

2

註 1:有刻度的儀器不可用加熱方式乾燥處理,可利用少量丙酮潤洗後以吹風機吹乾。 註 2:容量瓶之使用方法請參考實驗技能與 示範影片。

署 將方格紙剪成小塊,貼在容量瓶標線上(跨 越標線上下)。以分析天平稱量乾燥的容量 瓶的淨重,記錄重量到 0.1 mg 之精確度。

經由漏斗加蒸餾水至容量瓶,將要到達標線 時改爲以滴管逐滴加到標線處,稱得該容量 瓶及水的總重,記錄重量到 0.1 mg 之精確 度。

註:加入水時需注意不可在容量瓶的瓶頸(即水位上方)留有水滴而造成誤差。

將容量瓶與水的總重減去容量瓶的淨重,即 5 為水的質量,再依據水溫由表 1 第三欄,換 算出水在 20°C下的體積 V_1 。

6	比較 V_1 和所對應的刻度體積 V_2 (在本實驗應爲 100mL)。 如果 V_1 小於 V_2 ,則再滴加少量水於容量瓶中,並在容量瓶上的方格紙作記號,以標示當時的水液面。	V_1 =(157.5826-58.1784) \times 1.0028 = 99.6825 (mL) V_1 < V_2 (100 mL) 或以紅筆在標線上方 5 格劃記,並加水至紅線
7	重新稱量這容量瓶與水之總重,並參照步驟 5 之方法,換算出當時水的體積 V ₃ 。	
8	重複步驟 6 及 7 之方法數次,直到 $V_1 < V_2 < V_3$ 。 註:如果 V_1 大於 V_2 ,則改爲自容量瓶取出少量水,並重覆步驟 6 及 7,直到 $V_1 > V_2 > V_3$ 。	1589734 p
9	用內插法,在最後求出的 V_1 和 V_3 兩個記號 之間求出 V_2 (100 mL) 的正確位置並在容 量瓶的方格紙上標示之,完成校正。	
10	驗證:加水到容量瓶校正後的正確位置,重 新稱重並計算,核對校正是否正確。	15 18867 F

()吸液管的校準	
1	徹底清洗乾淨一支 25 mL 吸液管。 註:吸液管之使用方法請參考實驗技能與示 範影片。	
2	以分析天平稱量乾燥之 125 mL 錐形瓶及軟木塞之淨重,記錄重量到 0.1 mg 之精確度。	- 774354 P
3	方格紙剪成小塊,貼在吸液管標線上(跨越標線上下)。吸液管接上安全吸球並吸入蒸餾水至標線處。將此蒸餾水移入已稱淨重的125 mL 錐形瓶中,塞好瓶口軟木塞後稱重,記錄重量到0.1 mg 之精確度。	
4	以錐形瓶及蒸餾水的總重減去錐形瓶的淨重,即為蒸餾水的重量,再依據水溫由表 1 第三欄,換算出水在 20℃下的體積 V ₁ 。	TID24031 A
5	比較 V_1 和吸液管的刻度體積 V_2 (25 mL),如果 V_1 大於 V_2 ,則以吸液管吸水至標線下方數毫米 (mm) 處,並在方格紙上標出液面位置。	V_1 = (102.4037-77.4343) × 1.0028 = 25.0382 (mL) V_1 (25.0382) > V_2 (25 mL) 以紅筆在標線下方 5 格劃記,並吸水至對齊紅線。

6	將吸液管中的蒸餾水移入錐形瓶中,重新稱重,由水的淨重換算出水在 20℃時的體積 V ₃ 。	
7	重複步驟 5 與 6 之方法數次,直到 $V_1>V_2>V_3$ 。 註:若 $V_1,則以吸液管吸水至標線上方數毫米處,並在方格紙上標出液面位置,找出 V_1。$	127 1549) An 40 413 40
8	用內插法在管徑上的標線(V_1)和最後求出的 V_3 兩個記號之間,求出 V_2 的正確位置,並在方格紙上作記號完成校正。	
9	驗證:以吸液管吸取蒸餾水至校正後的正確 位置,再將吸液管中的水移入錐形瓶中,重 新稱重並計算,核對校正是否正確。	- 1520757 - 100 - 1520757 - 100

(三)滴定管的校正 徹底清洗乾淨一支 25 mL 滴定管。 加裝蒸餾水於滴定管,並調整至整支滴定管 中沒有氣泡且液面在刻度 0 mL 處。 1 註:滴定管之使用方法請參考實驗技能與 示範影片。 以分析天平稱量一乾燥的 125 mL 錐形瓶及 軟木塞重量,記錄重量到 1 mg 之精確度。 2 將滴定管中的水以每5mL之間隔,由滴定 管陸續放入錐形瓶中並稱量錐形瓶及水 ≣6 重,直到25 mL水全部放完。 $V_i = (55.2583-50.2430) \times 1.0028$ 參照表 1 求得滴定管上每 5 mL 區域間的校 3 正誤差值,並參考表2,列示實驗結果。 = 5.0293 (mL) (誤差+0.03) 重複校正各區間的體積,直到每一區間的二 次校正誤差值的比對差異在 0.05 mL 以內 爲止。 校正區 次校正誤 $\Delta V1(mL)$ $\Delta V2(mL)$ $\Delta V(mL)$ 其中正的校正誤差值表示滴定管所讀取之 5~10 + 0.06 + 0.04 + 0.05 +0.104 + 0.02刻度須再加入校正誤差值,才是正確的體 15~20 +0.03+0.03積。負的則表示須減去校正誤差值。 計算二次校正誤差值的平均值及累積總校 正誤差値(ΣΔV)如表 3。 総體積校正顯差 (mL) 0.0.0 0.00 0.00 0.00 0.00 以總校正誤差值爲 y 軸, 及滴定管體積爲 x 5 軸作圖,完成校正。 0.00 校正區間 (mL)

實驗結束後,將器具清洗乾淨,歸回原位。

6