

General Chemistry Laboratory

Guidelines for Lab Reports

- How to use significant figures (s.f.) correctly
- Example of prelab excercises and lab reports

Uncertainty in Measurements

What is the most meaningful reading? (A) 3.1 mL (B) 3.2 mL (C) 3.15 mL (D) 3.16 mL (E) 3.154 mL

International System of Units, SI units

Base quantity	Name of unit	Symbol
Length	meter	m
Time	second	S
Mass	kilogram	kg
Temperature	kelvin	K
Electrical current	ampere	Α
Amount of substance	mole	mol
Luminous intensity	candela	cd

Prefix	Meaning
mega, M	10 ⁶
kilo, k	10 ³
milli, m	10 ⁻³
micro, μ	10 ⁻⁶
nano, n	10 ⁻⁹

- When record raw data in the laboratory, always write down both <u>the value</u> (with correct s.f.) and <u>the unit</u>
- When reading values from instruments, take all the digits on display; the last digit is the uncertain digit

Temp.: 27.<u>8</u> °C 3 significant figures

Weight: 0.20 g 2 significant figures

Precision of the Instruments

Wt.: 405.2<u>6</u> g <u>+ 0.01 g</u>

Wt.: 1.0<u>6</u> g <u>+ 0.01 g</u> Wt.: 1.065<u>6</u> g <u>+ 0.0001 g</u>

- When record raw data in the laboratory, always write down both <u>the value</u> (with correct s.f.) and <u>the unit</u>
- Leave only one uncertain digit
- The number of significant figures in a quantity is all of the certain digits plus the first uncertain one

3 significant figures (2 certain + 1 uncertain) 3 significant figures (2 certain + 1 uncertain)

 # of significant figures = All certain digits + one uncertain digit (estimated value)

Example: How many significant figures do the following values have?

- 21.5 °C <u>3 s.f.</u>
- 0.02 L <u>1 s.f.</u>
- 0.205 g <u>3 s.f.</u>
- 0.50 M 2 s.f.
- 1000 mL ? s.f.

Rules:

- 1. Disregard all initial zeros
- 2. Disregard all final zeros unless they follow a decimal point
- 3. All remaining digits including zeros between nonzero digits are significant

 Pro tip: using scientific notation to write down values – this helps determine the significant figures easily

25002 significant figures 2.5×10^3 2.50×10^3 3 significant figures 2.50×10^3 2500.4 significant figures 2.500×10^3

- Defined quantities, scientific constants, and counting numbers of objects have an <u>infinite number of s.f.</u>
 - <u>1</u> atm
 - = 101325 Pa
 - = 760 torr
 - = 76 cmHg
 - = 760 mmHg
 - 0.2786 g x <u>8</u> = 2.229 g
 - Cl₂: 35.45 x 2 = 70.90

• <u>0</u> °C = 273.15 K

 In <u>addition and subtraction</u>, retain one uncertain digit in the sum or difference

 $\begin{array}{c} 1.75 \\ + 9.1 \\ 10.85 \end{array} \qquad \begin{array}{c} 172.63 \\ - 1.3 \\ 171.33 \end{array}$

Ans: 10.9(retain one uncertain digit \rightarrow three s.f.)

When the first discarded digit is equal or more than five (5 in this case), increase the last significant digit by 1 Ans: 171.3(retain one uncertain digit \rightarrow four s.f.)

When the first discarded digit is less than five (3 in this case), retain the last significant digit as is

 In <u>multiplication and division</u>, the number of significant figures in the product or quotient equals the number in the factor with the least significant figures

> $200.1 \times 3.21 = (642.321) = 642$ $4 \text{ s.f.} \quad 3 \text{ s.f.} \quad \longrightarrow \quad 3 \text{ s.f. remains}$

 $22\underline{2} \times 1.\underline{1} = (244.2) = 2.\underline{4} \times 10^2$

3 s.f. 2 s.f. → 2 s.f. remains

Example: In the experiment "The Molar Volume of Nitrogen Gas"

$$V_{STP} = (P_{atm} - P_{H_20}) \times \frac{\Delta V \times 273.15}{n_1 \times T_1}$$

four s.f. five s.f. defined (infinite s.f.)
$$= \frac{727.3 \ mmHg}{760 \ mmHg} \times \frac{0.25796 \ L \times 273.15 \ K}{1.0677 \times 10^{-2} \ mol \ \times \ 302.1 \ K}$$

five s.f. four s.f.

$$= 20.90 L$$

Because the smallest number of significant figures in this multiplication/division operation is four s.f., the answer is rounded to **four s.f.**

 When taking a logarithm of a number, keep as many digits to the right of the decimal point as there are significant figures in the original number

```
three s.f.

\log (2.00 \times 10^4) = \log (2.00) + \log (10^4)

= 0.301 + 4

= 4.301
```

 When taking an antilogarithm of a number, keep as many digits as there are digits to the right of the decimal point in the original number

 $pH = 8.74 = -\log [H^+]$

 $[H^+] = antilog (-8.74) = 1.819 \times 10^{-9} (M)$

= **1.8** x 10⁻⁹ (M) (rounded to two s.f.)

Example Determination of Chemical Formula

Mass of empty test tube: 42.495<u>3</u> g (six s.f.) Mass of test tube and CuO: 43.536<u>1</u> g (six s.f.) Mass of test tube and Cu: 43.330<u>0</u> g (six s.f.)

Mass of CuO: $43.536\underline{1} - 42.495\underline{3} = 1.040\underline{8}$ (g) (five s.f.) Mass of Cu: $43.330\underline{0} - 42.495\underline{3} = 0.834\underline{7}$ (g) (four s.f.) Mass of O: $1.040\underline{8} - 0.834\underline{7} = 0.206\underline{1}$ (g) (four s.f.)

<u>Alternative way:</u> Mass of O: 43.5361 - 43.3300 = 0.2061 (g) (four s.f.)

Example Determination of Chemical Formula

Weights are used in calculations:
Moles of Cu:
$$\frac{0.8347}{63.55} = 0.01313454 = 0.01313 \text{ (mol)}$$
 $\frac{0.8347}{63.6} = 0.0131$
Moles of O: $\frac{0.2061}{15.99} = 0.01288931 = 0.01289 \text{ (mol)}$ $\frac{0.2061}{16} = 0.013$

Cu: O = 0.01313: 0.01289

- = 1.00<mark>0</mark> : 0.9817
- = 1.019 : 1.000

If less precise atomic

Periodic Table (IUPAC dated 1 Dec 2018)

1	1						15		1	6							18
							15			0							He
hydrogen							7		8								helium
[1.0078, 1.0082]	2		Key:									13	14	15	16	17	4.0026
Li	Be		atomic num	ber DI			N		C			5 B	ĉ	7 N	Ő	° F	10 Ne
lithium 6.94	beryllium		name conventional atomic	weight			nitrog	en	oxy	gen		10.81	carbon 12.011	nitrogen 14.007	oxygen 15.999	fluorine	neon
[6.938, 6.997]	9.0122		standard atomic v	veight			14.00	7	15.9	99		[10.806, 10.821]	[12.009, 12.012]	[14.006, 14.008]	[15.999, 16.000]	18.998	20.180
11	12					L L	14 006 1	4 0081	[15 999	16 0001		13	14	15	16	17	18
sodium	IVIG						11.000, 1	1.000]	[10.000,	10.000]	J	Al	Silicon	phosphorus	3 sulfur		Ar
22.990	24.305 [24.304 24.307]	3	4	5	6	7	8	9	10	11	12	26.982	28.085	30.974	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39.098	40.078(4)	44.956	47.867	50.942	51.996	54.938	55.845(2)	58.933	58.693	63.546(3)	65.38(2)	69.723	72.630(8)	74.922	78.971(8)	[79.901, 79.907]	83.798(2)
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	indian	Xe
rubiaium	strontium	yttrium	zirconium	nicolum	moiyodenum	tecnnetium	rutnenium	modium	palladium	silver	cadmium	indium	un	anumony	tellurium	lodine	xenon
85.468	87.62	88.906	91.224(2)	92.906	95.95	75	101.07(2)	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60(3)	126.90	131.29
Ce	Ba	57-71	Hf	Ta	Ŵ	Re	Ós	l lr	Pt	Διι	Ha	TI	Ph	Bi	Po	Δt	Rn
caesium	barium	lanthanoids	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
132.91	137.33		178.49(2)	180.95	183.84	186.21	190.23(3)	192.22	195.08	196.97	200.59	204.38 [204.38, 204.39]	207.2	208.98	10		
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr francium	Ra	actinoids	Rf rutherfordium	Db dubnium	Sg seaborgium	Bh bohrium	HS hassium	Mt meitnerium	DS darmstadtium	Rg roentgenium	copernicium	Nh nihonium	FI flerovium	Mc moscovium	Lv livermorium	Ts tennessine	Og oganesson

PURE AND APPLIED CHEMISTRY

United Nations International Year Educational, Scientific and of the Periodic Table Cultural Organization of Chemical Elements

For notes and updates to this table, see www.iupac.org. This version is dated 1 December 2018. Copyright © 2018 IJPAC, the International Union of Pure and Applied Chemistry.

 The square brackets inform the lower and upper bounds of the standard atomic weight of that element

Example Molar Volume of Nitrogen Gas

Raw Measurement Results:

- Mass of H₂NSO₃H: 1.072<u>5</u> g(five s.f.)
- Molecular weight of H₂NSO₃H: 97.10 g/mol
- R.T.: 28.0 °C (thermometer, three s.f.)
- P_{H_2O} : 28.3 mmHg (appendix, three s.f.)
- P_{atm}: 76.5<u>7</u> cmHg (barometer, four s.f.)
- Mass of beaker: 154.66 g (five s.f.)
- Mass of beaker and water collected: 418.13 g (five s.f.)

Use the equation provided in lab manual:

$$\frac{1(atm) \times V_{STP}(L)}{1(mol) \times 273.15(K)} = \frac{P_{N_2} \times V_1}{n_1 \times T_1} = \frac{(P_{atm} - P_{H_2O}) \times \Delta V}{n_1 \times T_1}$$

1. Use the formula weight

written in the prelab

OR

2. Calculate by adding the

atomic weights from

Appendix

(x 3) = 97.10

the periodic table in the

e.g. (1.008 x 3) + (14.01

(x 1) + (32.07 x 1) + (16.00)

Example Molar Volume of Nitrogen Gas

- n₁ = 1.0725 / 97.10 = 0.011045314109 (mol) (four s.f.)
- T₁ = 28.0 + 273.15 (infinite s.f.) = 301.15 (K) (four s.f.)
- P_{atm} PH₂O = 765.7 28.3 = 737.4 (mmHg) (four s.f.)
- 1 atm = 760 mmHg (infinite s.f.)
- ΔV : 418.1<u>3</u>-154.6<u>6</u> = 263.4<u>7</u> g ÷ 1 g/mL

= 263.4<u>7</u> mL = 0.2634<u>7</u> L (five s.f.)

Tips:

- 1. Do the **rounding** only after all calculation steps are completed
- 2. Carry at least <u>one extra digit</u> beyond the significant figures through all of the calculation steps in order to avoid **rounding errors**

$$V_{STP} = \frac{\binom{737.4}{760} \times 0.26347}{0.01104_5 \times 301.1_5} \times 273.15 = 20.99294 = 20.99 \text{ (L)}$$

(four s.f.) 18

Example Molar Volume of Nitrogen Gas

- n₁ = 1.0725 / 97.10 = 0.011045314109 (mol) (four s.f.)
- T₁ = 28.0 + 273.15 (infinite s.f.) = 301.15 (K) (four s.f.)
- $P_{atm} P_{H_2O} = 1.008 0.0372 = 0.9708$ (atm) (three s.f.)
- 1 atm = 760 mmHg (infinite s.f.)
- ΔV : 418.1<u>3</u>-154.6<u>6</u> = 263.4<u>7</u> g ÷ 1 g/mL

= 263.4<u>7</u> mL = 0.2634<u>7</u> L (five s.f.)

If P_{atm} and P_{H2O} are converted to atm unit first \rightarrow Still correct but s.f. is different

Tips:

- 1. Do the **rounding** only after all calculation steps are completed
- 2. Carry at least <u>one extra digit</u> beyond the significant figures through all of the calculation steps in order to avoid **rounding errors**

 $V_{STP} = \frac{0.9708 \times 0.26347}{0.011045 \times 301.15} \times 273.15 = 21.00455844 = 21.0 (L)$ (three s.f.)

Prelab Exercise: Principles

Experiments 5 and 6 Qualitative analysis of cations 33

Experiments 5 and 6 QUALITATIVE ANALYSIS OF CATIONS

Objective

The purpose of this experiment is to learn the techniques to separate and identify some common cations, and to understand the principles for the equilibria of precipitation and complex formation.

Lab techniques

- Using litmus and universal indicator paper.
- > Operating of the centrifuge.

Introduction

Analysis of the identity and quantity o samples is an integral part of chemical rese analytical instruments (such as the atomic abs cations were analyzed with a simple method ir and basic instruments, as well as the applica precipitation, dissolution, and complex formatic of cations covers a very wide range of fields, in and materials research. In this experiment, stuc and procedures for separating and identifying c usually consists of three stages. First, based on cations are separated into 5 groups through precipitating reagents. Second, within each gro through selective dissolution processes. Last, th through different identification tests. The catio groups:

Group 1 cations (Hg22+, Ag+, and Pb2+; insolul

Among the common metallic cations, insoluble chlorides with hydrochloric acid. Wh white precipitates of Hg₂Cl₂, AgCl and PbCl remain in solution. Introduce relevant theories and chemical reactions concisely (less than one page)

· Objective I. Learn how to seperate and identify cations 2. Understand the equilibria of precipitation & complex formation Principles 1. All of the common cations are separated into 5 groups, and by adding selective precipitating agents we can know which group the cations belong to. 2. Within each group, we have special techniques respectively to seperate each group member and thus know what exactly the cations are. 3. In the I Group, there is precipitation of Hyclz, Ag 4, PbC/2 We separate PbClz by add hot water (Using it high solubility in hot water), and then separate Hg2Cl2 and AgCl by adding ammonia water: Ag Cliss + 2NH3(ag) -> Ag (NH3) 2 (ag) + Cl (ag) (dissolved) Hg2(l2(s) + 2NH3(ag) → Hg(2) + HgN2(l(s) + NH4 (ag) + Cl (ag) (black)

Prelab Exercise: Chemicals

Include English names, chemical formulas, molecular/formula weights, physical properties (density, m.p./b.p., appearance), and chemical properties, and toxicities

Name	Formula	Formula wt.	density (g/cm ³)	b.p./m.p. (°C)	Solubility	Appearance	Toxicity.
mercury (I) nitrate dihydrate	Hg_2(N03)2·2H20	561.22	4.78	-/ 70	13 (pwrts HzO)	colorless Orystal	Fatal if smallowed, in haled or in contact with skin
silver nitrate	Az NO3	169.87	4.35z	-/212	2.16×10 ² (g/100g H20)	colorless rhombic O crystal	Fatal if swallowed, causesserious skin burn and eye damage
lead (II) nitrate	Pb (NO3)2	331.2)	4.53	-/470	Soluble	white/colorless translucent crystals	Causeseye, skin Irnitation
Hydrochloric acid (6M)	Heliago	36.46		-/-	67.3 (30°) (g/100g H20)	clear colorless liguid	Causes serious skin burn eye damage, may cause respiratory, irritration

- Tabulate the content (can use two rows for each chemical)
- Indicate the sources (Wikipedia is often not the most correct source)
- Write N/A (not available) if a chemical has no toxicity data (though almost all chemicals are irritating to skin/eyes to an extent)
- Molecular/formula weights should have at least four significant figures 21

Prelab Exercise: Procedures

Do not copy the procedures from the lab manual as it is

Prelab Exercise: Procedures

Use flow chart and cartoon to explain the crucial operations in this experiment

Final Report (Brief Version)

- Five experiments for this semester (E1, E2, E3, E6, E7)
- Complete the data analysis, calculation and conclusion part in the lab manual (not including the Questions and Discussion)
- <u>Hand in the report at the end of the class</u> together with the prelab and lab records

Experiment 2
DETERMINATION OF THE CHEMICAL FORMULA OF A
COMPOUND

 I. Experimental Data and Results (show all calculations)

 1. Weight of empty large test tube (W1)

 2. Weight of test tube and copper oxide (W2)

 3. Weight of copper oxide (W2 - W1)

 4. Weight of test tube and copper (W3)

 5. Weight of copper (W3 - W1)

 6. Weight of oxygen (W2 - W3)

 7. Empirical formula of copper oxide

- <u>35 points per experiment</u>
- 5 pts deduction for late submission within one week
- 0 points for reports handed in more than one week late

II. Conclusion

Final Report (Brief Version)

I. Prelab exercise

- ✓ Objectives
- ✓ Principles
- ✓ Chemicals
- Procedures

II. Lab Notes

- ✓ Observation
- ✓ Operation
- ✓ Reaction condition
- ✓ Data and results

III. Final report

- ✓ Data analysis
- ✓ Conclusion
- ✓ Questions and discussion

15 pts + 10 pts + 10 pts

Final Report (Full Version)

- Four experiments for this semester (E5, E8, E10, E12)
- Complete the data analysis and calculation part in the lab manual
- Plot data correctly and discuss potential sources of errors
- <u>Hand in the report in the following week</u> together with the prelab and lab records
- <u>50 points per report</u> (5 pts deduction for late submission < 1 week)

I. Prelab exercise

- ✓ Objectives
- ✓ Principles
- ✓ Chemicals
- Procedures

II. Lab Notes

- ✓ Observation
- ✓ Operation
- Reaction condition
- Data and results

III. Final report

- ✓ Data analysis
- Elaborate results

25 p

- ✓ Error analysis
- Conclusion
- ✓ Questions and discussion

15 pts +

10 pts

Experimental Error Analysis

Error = $\frac{Exp.value - theo.value}{theo.value} imes 100\%$	 ✓ Positive or negative deviation ✓ Possible causes of deviation ✓ Give the conclusion depending
Error analysis and conclusions	on your experimental results
Pata analysiz and error analysis We have to calculate the theoretical By the Hess' law, we have: OH° ran = S being the Stoithiometric coefficients and exp offe of each compar 2. HologitMaddiagitMaclingitH20ce (-167.15; 469.15, -40 3. CH2CoothaptMaddiagitH20ce (-167.15; 469.15, -126. 4. NH20155) -> NH2000000000000000000000000000000000000	1 value of each exp first. In SHE product - Sin SHE ve actants with n SHE being the enthalpy of formation. und(k1/mel) theoretRal value of SH® rxn(K1/mel) 1.27, -285.830 {(-407.27)+(-285.830)]-((-107.5)+(+441.15))= -56.8 13, -285.830 } ((-726.13)+(-285.830)]-((-48634)+(-469.15))= -56.8 13, -285.830) ((-726.13)+(-285.830)]-((-314.5))= 142.16 14, -285.830) ((-726.13)+(-285.830)]-((-314.5))= 142.16 167.08) ((-133.26)+(-169.08)]-(-314.5)= 142.16 10, -285.830) ((-285.830)+(-469.0)]-(-601.6)=-15/1.2. 6) -60[.6.6. 6) -60[.6.6. 160.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.

Lab Report Grading Rubrics

Category	Guidelines	Pts		
I. Prelab exercise	1. Briefly summarize main principles and relevant equations	5		
	2. List the chemicals' toxicity and physical and chemical properties	5		
	3. Use flow chart to explain the experimental procedures			
II. Lab notes	4. Record data with correct significant figures and units			
	Record observations, operations, and reaction conditions in details	5		
III. Final report	6. Process data correctly (calculation included)	5		
	7. Present final results with correct significant figures, units, and conclusion sentences	5		
	8. Plot the results with correct XY axes and labeling*			
	9. Analyze the results with appropriate error discussions*	5		
	10. Elaborate findings and provide constructive suggestions*	5		