General Chemistry Laboratory

The Molar Volume of Nitrogen Gas

Preparation

- Put on your lab coat and safety goggle
- Turn off your mobile phone
- Place your backpack in the drawer or the cabinet
- Put your prelab on lab bench (hold it down with something heavy) for ATA to sign

Collect the following items
\square Two small test tubes (oven)
\square An iron stand and two three prong clamps
■ 250 mL Erlenmeyer flask, 500 mL Florence flask, a rubber stopper with rubber tube and glass tube (boxes on the central islands)

Objective and Principles

- Objective: Using the ideal gas law to deduce the molar volume of nitrogen gas at STP
- Lab techniques:
- Using an analytical balance to weigh chemicals
- Measuring volume, pressure, and temperature
- Definitions:
- Molar volume: the volume of a mole of substance
- STP (standard temperature and pressure): $0^{\circ} \mathrm{C}$, ' 1 atm'
- For ideal gas, molar volume $=22.414 \mathrm{~L}$ at STP
\checkmark STP: Abbreviation for standard temperature (273.15 K or $0^{\circ} \mathrm{C}$) and pressure (105 Pa). Ref: IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book")
$\mathrm{H}_{2} \mathrm{NSO}_{3} \mathrm{H}(\mathrm{s})+\mathrm{NO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{N}_{2}(\mathrm{~g})$

Initial: n_{1}
Change: $-\mathrm{n}_{1}$
Final: 0
n_{2}

$-\mathrm{n}_{1}$	$+\mathrm{n}_{1}$	$+\mathrm{n}_{1}$	$+\mathrm{n}_{1}$
$\mathrm{n}_{2}-\mathrm{n}_{1}$	n_{1}		n_{1}

n_{1}

- Sulfamic acid $\left(\mathrm{H}_{2} \mathrm{NSO}_{3} \mathrm{H}, \mathrm{n}_{1}\right.$ mole) being the limiting reagent
- Sodium nitrite $\left(\mathrm{NaNO}_{2}\right)$ being the excess reagent $\left(\mathrm{n}_{2}>\mathrm{n}_{1}\right)$

Experimental Setup

Fastened by a three prong clamp (Use the iron stand on hot plate)
Fastened by a three prong clamp

Erlenmeyer flask

Florence flask
(B)

Rubber/glass tube (C)

Lab bench

Nitrogen-Producing Reaction

$$
\mathrm{H}_{2} \mathrm{NSO}_{3} \mathrm{H}(\mathrm{~s})+\mathrm{NO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{N}_{2}(\mathrm{~g})
$$

- Sulfamic acid $\left(\mathrm{H}_{2} \mathrm{NSO}_{3} \mathrm{H}, \mathrm{n}_{1}\right.$ mole) being the limiting reagent
- Sodium nitrite $\left(\mathrm{NaNO}_{2}\right)$ being the excess reagent $\left(\mathrm{n}_{2}>\mathrm{n}_{1}\right)$
- As per ideal gas law, the molar volume of N_{2} at $\operatorname{STP}\left(0^{\circ} \mathrm{C}, 1\right.$ atm) can be related to the volume of $\mathrm{N}_{2}\left(\mathrm{~V}_{1}\right)$ at room temperature $\left(T_{1}\right)$ given the number of mole $\left(\mathrm{n}_{1}\right)$:

Step 1/6: Measuring Chemicals

- Measure roughly 1 g NaNO 2 and dissolve them with 50 mL DI water in Erlenmeyer flask A
- Measure the weight of an empty small test tube $\left(\mathrm{W}_{1}\right)$ using an
 analytical balance
- Place roughly $1.0-1.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{NSO}_{3} \mathrm{H}$ into the small test tube, record the accurate weight $\left(\mathbf{W}_{2}\right)$

\checkmark Use a small beaker to hold the test tube \rightarrow only the weight difference $\left(\mathrm{W}_{2}-\mathrm{W}_{1}\right)$ matters

Step 1/6: Measuring Chemicals

Place a small beaker (container)

Close windshield \& zeroing
(TARE)

Display shows 0.0000 g
(Deduction of container's mass)

Place test tube in \& close
windshield

Mass of $\mathrm{H}_{2} \mathrm{NSO}_{3} \mathrm{H}$ $\mathrm{W}_{2}-\mathrm{W}_{1}=1.0445 \mathrm{~g}$ (Five s.f.)

$\mathrm{W}_{1}: 7.5757 \mathrm{~g}$ (Mass of small test tube)

Take out small test tube

Use the skinny end of a spatula to put $\sim 1 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{NSO}_{3} \mathrm{H}$ (ca. 5 times) in the small test tube

(2)
 Step 2/6: Check the Water Flow

- Fill both the Florence flask B and the beaker D with water
- Fill the rubber/glass tube C with water, apply the pinch clamp
- Fix the Florence flask with a three prong clamp to avoid breaking
- Use the rubber/glass tube C to connect B and D
- Loosen the pinch clamp and check if the water can flow freely between the two container; re-apply the clamp

\checkmark The end of glass tube shaft should nearly touch the bottom of the Florence flask
\checkmark Check whether there is air bubbles in the rubber/glass tube

Step 3/6: Set up the Reaction Vessel

- Use a three prong clamp to fix the Erlenmeyer flask A at a tilted angle
- Place the small test tube containing $\mathrm{H}_{2} \mathrm{NSO}_{3} \mathrm{H}$ at the bottom of Erlenmeyer flask A using a tweezer
- Install the rubber stopper onto the Erlenmeyer flask
\checkmark Practice with the empty test tube first
\checkmark If NaNO_{2} is accidentally mixed with $\mathrm{H}_{2} \mathrm{NSO}_{3} \mathrm{H}$, clean the glassware and re-weight both chemicals

Step 4/6: Balance the Pressure

 are tightly fitted

- Loosen the pinch clamp, adjust the height of beaker so that the water levels in B \& D become equal
- Tighten the pinch clamp and dispose all the remaining water in the beaker D
- Measure the weight of empty beaker

Ask a TA/ATA to Check Your Setup

Flasks are properly fastened and sealed

Water level in the bottleneck region
)

Step 5/6: Start Generating Nitrogen

- Straighten the Erlenmeyer flask and let the chemicals mix
- Loosen the pinch clamp quickly
- Swirl the flask gently and observe water flow
- Maintain the rubber tube beneath the water level in the beaker
\checkmark Rubber tubes shouldn't be twisted
\checkmark Brown NO_{2} gas may be produced via a side reaction

Step 6/6: Adjust Pressure and Temp.

- Place the Erlenmeyer flask A in a room-temperature water bath
- Adjust the height of the Florence flask so that the water levels in B \& D become equal
- Re-apply the pinch clamp onto the rubber tube C
- Measure the weight of repelled water in beaker $\rightarrow \Delta \mathrm{V}$
- Record room temperature T_{1} and pressure $\mathrm{P}_{\mathrm{atm}}$
- Use Appendix 7 to find $P_{H_{2} \mathrm{O}}$ (vapor pressures of water)

$$
\frac{1(\mathrm{~atm}) \times V_{S T P}(L)}{1(\mathrm{~mol}) \times 273.15(\mathrm{~K})}=\frac{\left(P_{a t m}-P_{\mathrm{H}_{2} \mathrm{O}}\right) \times \Delta V}{n_{1} \times T_{1}}
$$

Clean-Up and Check-Out

- Clean and return the small test tubes
- Pour the solution waste into the drain directly
- Tuck the lab stools underneath the lab bench
- Clean up the lab bench and check personal equipment inventory (have an associate TA signed the check list)
- Use the correct significant figures and units (e.g. $1.0445 \mathrm{~g}, 25.13^{\circ} \mathrm{C}$, and 359.12 mL)
- This is a Brief Report experiment:
- Complete calculation using correct significant figures
- Hand in prelab/lab note/report together to the TA
- Groups on duty shall stay and help clean up the lab

Notes and Reminders

- Wear personal protective equipment (PPE, i.e. lab coat, safety goggle, closed-toe shoes, long pants) at all time in the laboratory
- Bring a scientific calculator (smartphone is not allowed)
- Communicate with your lab buddy
- Communicate with TA/ATA should you have any question

Electronic Balance

- Unless instructed, do not move the balance so that proper calibration is maintained
- Do not overload the balance (the maximum load is 610 grams for electronic balance, and 210 grams for analytical balance)
- Before use, warm up the balance for at least 30 min and ensure that it is level and clean

Electronic Balance Analytical Balance (resolution 0.01 g$) \quad(r e s o l u t i o n ~ 0.0001 \mathrm{~g})$

- Do not put chemicals directly on the weighing pan - use a folded weighing paper, a weighing boat, or a beaker (mind the weight limit) as container
- Close all windshields on the analytical balance before zeroing and recording values
- Maintain the tidiness inside and outside the balance; use the provided soft brush to clean spillages
- Do not weigh hot objects as the convective airflow will affect the measured mass

Weighing Chemicals

- Read the label on the chemical bottle carefully before proceeding to weigh
- For solid chemicals, place a folded weighing paper or a beaker on the electronic balance to hold chemicals. Use a clean and dry spatula to move chemicals
- For liquid chemicals, use a clean and rinsed dropper pipet

Figure T10-1 Weighing chemicals

- Unless specifically instructed, never return any excess chemical to the original bottle to avoid contamination - use the designated waste bin
- Maintain the tidiness inside and outside the balance - move appropriate amount with spatula to avoid any spillage, and use the provided soft brush to clean scattered chemicals
- Close the cap of chemical bottle immediately after use

Mercury Barometer

Figure T3-1 Illustration of mercury barometer

