

Heat of Reactions

✓ Use the warm water in the fume hood for experiment (do not use the water fountain)

The TA will distribute one stop watch to each group

From your personal equipment

Collect the following items

One digital thermometer

- One 400 mL beaker
- One 50 mL graduated cylinder

Objective and Principles

• Objective:

- Determine the heat capacity of home-built calorimeter
- Determine the heats of neutralization (HCI, CH_3COOH) and the heat of solution (NH_4CI)
- Use Hess' law to calculate ΔH_{f} (enthalpy of formation) of MgO

Lab techniques:

- Operate a simple calorimeter
- Using a graduated cylinder to measure volume
- Using a digital thermometer
- Measure the weights of chemicals

Enthalpy of Reaction

- At constant pressure, the change in enthalpy, ΔH, during a chemical reaction (*enthalpy of reaction*) equals to the heat gained or lost (q_p)
- $q_p = \Delta H = H(products) H(reactants)$

Endothermic reaction (\Delta H > 0)

System & Surroundings

5

Constant-Pressure Calorimetry

 The simple home-built calorimeter is treated as an isolated system (q_{sys} = 0)

 $\begin{array}{l} \begin{array}{l} \text{heat transfer} \\ \text{to solution} \\ q_{sys} = \mathbf{q_{rxn}} + (q_{soln} + q_{cal}) = 0 \\ \text{Heat of} \\ \text{reaction} \\ \end{array} \begin{array}{l} \text{heat transfer} \\ \text{to calorimeter} \end{array}$

$$\rightarrow$$
 q_{rxn} = - (q_{soln} + q_{cal})

• $q_{soln} = m \times s \times \Delta T$

m: mass (g), s: specific heat (cal/g· $^{\circ}$ C)

 Δ T: temperature change (°C)

• $q_{cal} = C_{cal} \times \Delta T$

 C_{cal} : heat capacity of calorimeter (cal/°C)

• $\Delta H = q_{rxn} / n$ (molar heat of reaction)

n: mole of limiting reagent

(here we assume the density and specific heat of solutions are identical to that of H_2O)⁶

Two Styroform cups and a 400 mL beaker stacked together

How to Determine C_{cal}

- m_w grams of warm water (temperature T_w) is added to m_c grams of cold water (temperature T_c) in a calorimeter
- The final temperature at equilibrum: T_f
- For an isolated system:

 $0 = q_1$ (heat released by the warm water)

+ q₂ (heat gained by the cold water)

+ q₃ (heat gained by the calorimeter)

- $0 = [m_w \times s \times (T_f T_w)] + [m_c \times s \times (T_f T_c)] + [C_{cal} \times (T_f T_c)]$
- Measure T_w , T_c , $T_f \rightarrow Calculate C_{cal}$

Experiment Tasks

Hess' Law

- 1. $Mg(s) + 2H^+(aq) \rightarrow Mg^{2+}(aq) + H_2(g)$ ΔH_1
- 2. MgO(s) + 2H⁺(aq) \rightarrow Mg²⁺(aq) + H₂O(l) Δ H₂

This rxn = (1) - (2) + (3)

3. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$ $\Delta H_3 = \Delta H_f(H_2O) = -68.4 \text{ kcal/mol}$

$$Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s) \qquad \Delta H = \Delta H_f(MgO)$$

 $= \Delta H_1 - \Delta H_2 + \Delta H_3$

 ΔH_1 and ΔH_2 are measured experimentally in this lab $\rightarrow \Delta H_f(MgO)$ can then be calculated

Task 1: Determining C_{cal}

- Use a graduated cylinder to measure 50.0 mL room temperature DI water (use a drop pipet to adjust the liquid level if needed)
- Transfer the water into the calorimeter, close the plastic lid, and insert the thermoprobe
- Wait 3 minutes, then record the water temperature

 Place the graduated cylinder away from the bench edge to avoid knocking it over accidentally

Task 1: Determining C_{cal}

- Use a beaker to take some hot water from the fume hood
- Adjust the water temperature with cold water until it is 10 – 15 °C higher than the cold water

- Use a graduated cylinder to measure 50.0 mL warm water
- Use the thermoprobe to check whether the water temperature is even at different heights
- Record the water temperature at the middle part
 ¹¹

Task 1: Determining C_{cal}

- Pour the warm water quickly into the calorimeter, close the plastic lid
- Insert the thermoprobe
- Swirl the calorimeter to mix the water
- Record the temperature readings at a fixed time interval, find out what the equilibrium temperature is (take the highest reading for exothermic reactions and the lowest point for endothermic reactions)

Task 2: Heat of Neutralization (HCl+NaOH)

- Measure 50.0 mL of 1.0 M HCl into the calorimeter, then record its equilibrium temperature
- Measure 50.0 mL of 1.0 M NaOH, then record its equilibrium temperature in the graduated cylinder
- Pour NaOH quickly into the calorimeter, close the plastic lid and insert the thermoprobe
- Mix the solution; Record the evolution of temperature
- Wash the graduated cylinder thoroughly between use, or use separate graduated cylinder for measuring HCI(aq) and NaOH(aq)

Example:

Time (s)	Temp.(°C)
0	23.9
5	29.8
10	29.8
15	29.7
20	29.7

13

- Measure 50.0 mL of 1.0 M CH₃COOH into the calorimeter, then record its equilibrium temperature
- Measure 50.0 mL of 1.0 M NaOH, then record its equilibrium temperature in the graduated cylinder
- Pour NaOH quickly into the calorimeter, close the plastic lid and insert the thermoprobe
- Mix the solution; Record the evolution of temperature

Task 4: Heat of Solution (NH₄Cl)

Example:

Time (s)	Temp.(°C)
0	23.4
30	20.7
60	19.5
90	19.6
120	19.6

- Measure 50.0 mL of DI water into the calorimeter, then record its equilibrium temperature
- Weigh ca. 3 g ammonium chloride (NH₄CI) and record the exact weight
- Add NH₄Cl(s) to the calorimeter, close the plastic lid and insert the thermoprobe
- Swirl the calorimeter to mix the solution thoroughly, record the time evolution of temperature
- All solid must be dissolved completely

- Measure 100.0 mL of 1.0 M HCl into the calorimeter, then record its equilibrium temperature
- Weigh ca. 0.2 g magnesium (Mg) and record the exact weight
- Add Mg(s) into the calorimeter, close the plastic lid and insert the thermoprobe
- Swirl the calorimeter to mix the solution thoroughly, record the time evolution of temperature

 $Mg(s) + 2H^+(aq) \rightarrow Mg^{2+}(aq) + H_2(g)$

- Measure 100.0 mL of 1.0 M HCl into the calorimeter, then record its equilibrium temperature
- Weigh ca. 0.7 g magnesium oxide (MgO) and record the exact weight
- Add MgO(s) into the calorimeter, close the plastic lid and insert the thermoprobe
- Swirl the calorimeter to mix the solution thoroughly, record the time evolution of temperature

$$MgO(s) + 2H^{+}(aq) \rightarrow Mg^{2+}(aq) + H_2O(I)$$

- The tip of the thermoprobe should be in the center of the solution, as it may give inaccurate reading when touching the container wall
- After measuring the temperature of warm water, rinse the thermoprobe with tap water (so it can cool down) before inserting it into the calorimeter
- The reactions between cold and warm water and acidbase neutralization occur quite fast, so the temperature recording should start immediately after mixing
- Wash and dry the Styrofoam cups after each experiment
- Solid reactants (NH₄CI, Mg, MgO) must be reacted completely → observe if any solid remains in the calorimeter after each experiment

Additional Notes

- How to determine the equilibrium temperatures:
 - Exothermic reactions: the solution temperature would increase to a highest reading then start to decrease
 - Endothermic reactions: the solution temperature would decrease to a lowest reading then start to increase
- ➤ Assume the solution density is identical to that of water (1.0 g/cm³) ← this is an experimental value (two s.f.)
- List calculations in details in the lab report (including amount of heat, # moles of reactants, and enthalpy of reactions)
- Use correct significant figures and SI units (kJ/mol)

Clean-Up and Check-Out

- Salt solutions resulted from acid-base neutralization can be disposed into the sink
- Clean the Styrofoam cups and plastic lid for reuse
- Return the stop watch to TA
- Clean up the lab bench and check personal equipment inventory (have an associate TA sign the check list)
- This is a **Full Report** experiment:
 - Have the lab notes and results checked by the TA
 - Hand in the report next week
- Groups on duty shall stay and help clean up the lab