General Chemistry Laboratory

Heat of Reactions

Preparation

Collect the following items

Two Styrofoam cups and a plastic lid
\square One digital thermometer

\square The TA will distribute one stop watch to each group

From your personal equipment

- One 400 mL beaker
\square One 50 mL graduated cylinder

\checkmark Use the warm water in the fume hood for experiment (do not use the water fountain)

Objective and Principles

- Objective:
- Determine the heat capacity of home-built calorimeter
- Determine the heats of neutralization $\left(\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}\right)$ and the heat of solution $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$
- Use Hess' law to calculate $\Delta \mathrm{H}_{\mathrm{f}}$ (enthalpy of formation) of MgO
- Lab techniques:
- Operate a simple calorimeter
- Using a graduated cylinder to measure volume
- Using a digital thermometer
- Measure the weights of chemicals

Enthalpy of Reaction

- At constant pressure, the change in enthalpy, $\Delta \mathbf{H}$, during a chemical reaction (enthalpy of reaction) equals to the heat gained or lost (q_{p})
- $q_{p}=\Delta H=H$ (products) $-H$ (reactants)

Endothermic reaction ($\mathbf{\Delta H}>\mathbf{0}$)

Exothermic reaction $(\Delta H<0)$

System \& Surroundings

Open system

Isolated system

Neither mass nor energy can exchange

Constant-Pressure Calorimetry

- The simple home-built calorimeter is treated as an isolated system ($\mathrm{q}_{\text {sys }}=0$)

$$
\begin{gathered}
\text { heat transfer } \\
\text { to solution } \\
\mathrm{q}_{\text {sys }}=\mathrm{q}_{\mathrm{rxn}}+\left(\mathrm{q}_{\text {soln }}+\mathrm{q}_{\mathrm{cal}}\right)=0 \\
\begin{array}{l}
\text { Heat of } \\
\text { reaction }
\end{array} \\
\rightarrow \mathrm{q}_{\mathrm{rxn}}=-\left(\mathrm{q}_{\text {soln transfer }}+\mathrm{q}_{\mathrm{cal}}\right)
\end{gathered}
$$

- $\mathrm{q}_{\mathrm{soln}}=\mathrm{m} \times \mathrm{s} \times \Delta \mathrm{T}$ m : mass (g), s: specific heat (cal/g. $\left.{ }^{\circ} \mathrm{C}\right)$
ΔT : temperature change $\left({ }^{\circ} \mathrm{C}\right)$
- $\mathrm{q}_{\mathrm{cal}}=\mathrm{C}_{\text {cal }} \times \Delta \mathrm{T}$
$\mathrm{C}_{\text {cal }}$: heat capacity of calorimeter (cal/ ${ }^{\circ} \mathrm{C}$)
- $\Delta H=q_{\mathrm{rxn}} / \mathrm{n}$ (molar heat of reaction)
n : mole of limiting reagent
(here we assume the density and specific heat of solutions are identical to that of $\mathrm{H}_{2} \mathrm{O}$) ${ }^{6}$

How to Determine $\mathrm{C}_{\text {cal }}$

- m_{w} grams of warm water (temperature T_{w}) is added to m_{c} grams of cold water (temperature T_{c}) in a calorimeter
- The final temperature at equilibrum: T_{f}
- For an isolated system:

$$
\begin{aligned}
0 & =q_{1} \text { (heat released by the warm water) } \\
& +q_{2} \text { (heat gained by the cold water) } \\
& +q_{3} \text { (heat gained by the calorimeter) }
\end{aligned}
$$

- $0=\left[m_{w} \times s \times\left(T_{f}-T_{w}\right)\right]+\left[m_{c} \times s \times\left(T_{f}-T_{c}\right)\right]+$

$$
\left[\mathrm{C}_{\mathrm{cal}} \times\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{c}}\right)\right]
$$

- Measure $\mathrm{T}_{\mathrm{w}}, \mathrm{T}_{\mathrm{c}}, \mathrm{T}_{\mathrm{f}} \rightarrow$ Calculate $\mathrm{C}_{\mathrm{cal}}$

Experiment Tasks

Determining $\mathrm{C}_{\text {cal }}$

Heat of neutralization $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq})$

Heat of solution $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$

Heat of neutralization $\mathrm{AcOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq})$

You should measure $C_{\text {cal }}$ first and let the TA check your result, then proceed to the other tasks in no particular order

Hess'law
$\Delta H_{f}{ }^{0}(\mathrm{MgO})$

Hess' Law

1. $\mathrm{Mg}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{1}$
2. $\mathrm{MgO}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta \mathrm{H}_{2}$
3. $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ $\Delta \mathrm{H}_{3}=\Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}\right)=-68.4 \mathrm{kcal} / \mathrm{mol}$

This rxn $=(1)-(2)+(3)$
$\Delta \mathrm{H}=\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{MgO})$

$$
=\Delta H_{1}-\Delta H_{2}+\Delta H_{3}
$$

$\Delta \mathrm{H}_{1}$ and $\Delta \mathrm{H}_{2}$ are measured experimentally in this lab $\rightarrow \Delta H_{f}(\mathrm{MgO})$ can then be calculated

Task 1: Determining $\mathrm{C}_{\mathrm{cal}}$

- Use a graduated cylinder to measure 50.0 mL room temperature DI water (use a drop pipet to adjust the liquid level if needed)
- Transfer the water into the calorimeter, close the plastic lid, and insert the thermoprobe
- Wait 3 minutes, then record the water temperature
\checkmark Place the graduated cylinder away from the bench edge to avoid knocking it over accidentally

Task 1: Determining $\mathrm{C}_{\mathrm{cal}}$

- Use a beaker to take some hot water from the fume hood
- Adjust the water temperature with cold water until it is $10-15{ }^{\circ} \mathrm{C}$ higher than the cold water

- Use a graduated cylinder to measure 50.0 mL warm water
- Use the thermoprobe to check whether the water temperature is even at different heights
- Record the water temperature at the middle part

Task 1: Determining $\mathrm{C}_{\mathrm{cal}}$

Example:

Time (s)	Temp. $\left.{ }^{\circ} \mathrm{C}\right)$
0	23.5
5	31.3
10	31.3
15	31.0

- Pour the warm water quickly into the calorimeter, close the plastic lid
- Insert the thermoprobe
- Swirl the calorimeter to mix the water
- Record the temperature readings at a fixed time interval, find out what the equilibrium temperature is (take the highest reading for exothermic reactions and the lowest point for endothermic reactions)

Task 2: Heat of Neutralization (HCl+NaOH)

- Measure 50.0 mL of 1.0 M HCl into the calorimeter, then record its equilibrium temperature
- Measure 50.0 mL of 1.0 M NaOH , then record its equilibrium temperature in the graduated cylinder
- Pour NaOH quickly into the calorimeter, close the plastic lid and insert the thermoprobe
- Mix the solution; Record the evolution of temperature

Time (s)	Temp. $\left({ }^{\circ} \mathrm{C}\right.$)
0	23.9
5	29.8
10	29.8
15	29.7
20	29.7

\checkmark Wash the graduated cylinder thoroughly between use, or use separate graduated cylinder for measuring $\mathrm{HCl}(\mathrm{aq})$ and $\mathrm{NaOH}(\mathrm{aq})$

- Measure 50.0 mL of $1.0 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ into the calorimeter, then record its equilibrium temperature
- Measure 50.0 mL of 1.0 M NaOH , then record its equilibrium temperature in the graduated cylinder
- Pour NaOH quickly into the calorimeter, close the plastic lid and insert the thermoprobe
- Mix the solution; Record the evolution of temperature

Task 4: Heat of Solution $\left(\mathbf{N H}_{4} \mathbf{C l}\right)$

- Measure 50.0 mL of DI water into the calorimeter, then record its equilibrium temperature
- Weigh ca. 3 g ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ and record the exact weight
- Add $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ to the calorimeter, close the plastic lid and insert the thermoprobe
- Swirl the calorimeter to mix the solution thoroughly, record the time evolution of temperature

Task 5.1: Enthaply of Reaction (Mg + HCI)

- Measure 100.0 mL of 1.0 M HCl into the calorimeter, then record its equilibrium temperature
- Weigh ca. 0.2 g magnesium (Mg) and record the exact weight
- Add $\mathrm{Mg}(\mathrm{s})$ into the calorimeter, close the plastic lid and insert the thermoprobe
- Swirl the calorimeter to mix the solution thoroughly, record the time evolution of twice temperature

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

(f): Task 5.2: Enthaply of Reaction ($\mathrm{MgO}+\mathrm{HCl}$)

- Measure 100.0 mL of 1.0 M HCl into the calorimeter, then record its equilibrium temperature
- Weigh ca. 0.7 g magnesium oxide (MgO) and record the exact weight
- Add MgO (s) into the calorimeter, close the plastic lid and insert the thermoprobe
- Swirl the calorimeter to mix the solution thoroughly, record the time evolution of temperature

$$
\mathrm{MgO}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Additional Notes

> The tip of the thermoprobe should be in the center of the solution, as it may give inaccurate reading when touching the container wall
> After measuring the temperature of warm water, rinse the thermoprobe with tap water (so it can cool down) before inserting it into the calorimeter
> The reactions between cold and warm water and acidbase neutralization occur quite fast, so the temperature recording should start immediately after mixing
> Wash and dry the Styrofoam cups after each experiment
> Solid reactants $\left(\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{Mg}, \mathrm{MgO}\right)$ must be reacted completely \rightarrow observe if any solid remains in the calorimeter after each experiment

Additional Notes

> How to determine the equilibrium temperatures:

* Exothermic reactions: the solution temperature would increase to a highest reading then start to decrease
* Endothermic reactions: the solution temperature would decrease to a lowest reading then start to increase
> Assume the solution density is identical to that of water (1.0 $\mathrm{g} / \mathrm{cm}^{3}$) \leftarrow this is an experimental value (two s.f.)
> Assume the specific heat of solution is identical to that of water ($1 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$) \leftarrow this is an exact value (infinite s.f.)
> List calculations in details in the lab report (including amount of heat, \# moles of reactants, and enthalpy of reactions)
> Use correct significant figures and SI units ($\mathrm{kJ} / \mathrm{mol}$)

Clean-Up and Check-Out

- Salt solutions resulted from acid-base neutralization can be disposed into the sink
- Clean the Styrofoam cups and plastic lid for reuse
- Return the stop watch to TA
- Clean up the lab bench and check personal equipment inventory (have an associate TA sign the check list)
- This is a Full Report experiment:
- Have the lab notes and results checked by the TA
- Hand in the report next week
- Groups on duty shall stay and help clean up the lab

