Experiment 3 QUALITATIVE ANALYSIS OF GROUP 1 CATIONS

Objective

The purpose of this experiment is to learn the techniques to separate and identify some common cations, and to understand the principles for the equilibria of precipitation and complex formation.

Lab techniques

- Using litmus paper
- > Operating the stirrer/hot plate, centrifuge, and vortex mixer

Introduction

Analysis of the identity and quantity of metallic elements in compounds or samples is an integral part of chemical research. Before the advent of modern analytical instruments (such as the atomic absorption spectrophotometer), metallic cations were analyzed and identified with a simple method involving the use of common reagents and basic instruments, as well as the application of the equilibrium concepts of precipitation, dissolution, and complex formation. The application of qualitative analysis of cations covers a very wide range of fields, including environmental or soil analysis and materials research. In this experiment, students will learn basic principles and procedures for separating and identifying cations.

Qualitative analysis of cations usually consists of three stages. First, based on the different solubility properties, the cations are separated into 5 groups through the successive addition of selective precipitating reagents. Second, within each group, precipitated cations are separated through selective dissolution processes. Last, the presence of each cation is verified through different identification tests. The cations are classified into the following 5 groups:

I. Systematic analysis of cations into five groups

Group 1 cations (Hg2²⁺, Ag⁺, and Pb²⁺; insoluble chlorides):

Among the common metallic cations, only these three cations can form insoluble chlorides with hydrochloric acid. When 6 M HCl is added to the solution, white precipitates of Hg₂Cl₂, AgCl, and PbCl₂ are formed. Other metallic cations remain in solution.

Group 2 cations (Hg²⁺, Pb²⁺, Cu²⁺, Bi³⁺, Cd²⁺, As³⁺, Sb³⁺, and Sn⁴⁺; insoluble sulfides in acidic solution):

After the insoluble chlorides are isolated, the pH of the solution is adjusted to 0.5, and then H₂S(aq) is added. Since the concentration of sulfide ion (S^{2–}) is very low at low pH, only those metallic sulfides having very low K_{sp} values, *i.e.* HgS, PbS, CuS, Bi₂S₃, CdS, As₂S₃, Sb₂S₃, and SnS₂, will precipitate. Cations with larger K_{sp} values of their sulfides, such as Zn²⁺ and Ni²⁺, remain in the solution.

Group 3 cations (Al³⁺, Fe³⁺, Co²⁺, Ni²⁺, Cr³⁺, Zn²⁺, and Mn²⁺; insoluble sulfides or hydroxides in alkaline solution):

After isolating the insoluble sulfides in an acidic medium, the solution is made basic, and then H₂S(aq) is added. In an alkaline solution, the concentration of S^{2–} increases, and the metallic sulfides with larger K_{sp} values, such as ZnS, NiS, CoS, and MnS, precipitate. Moreover, since the solution is basic, Al³⁺, Fe³⁺, and Cr³⁺ form insoluble hydroxides and are also separated from the solution.

Group 4 cations (Mg²⁺, Ca²⁺, Sr²⁺, and Ba²⁺; carbonate precipitates):

These four metallic cations all belong to Group IIA in the periodic table, and therefore their chemical properties are very similar. They form soluble chlorides and sulfides and hence are separable from group 1, 2, and 3 cations. However, their carbonates precipitate in a mixture of (NH₄)₂CO₃/NH₄Cl/NH₃ solution.

Group 5 cations (Na⁺, K⁺, and NH₄⁺; soluble cations):

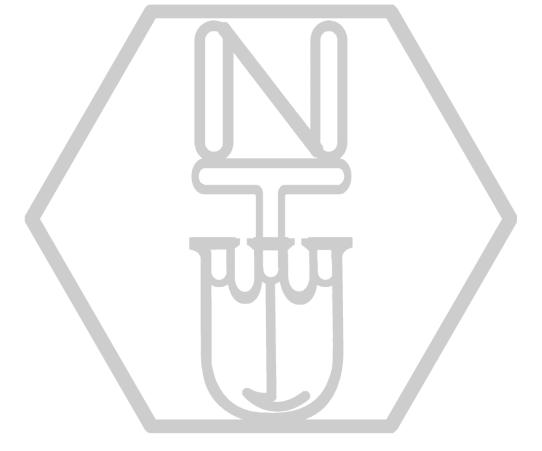
None of the cations in this group form precipitates in the separation processes of group $1\sim4$ cations and thus remain in the final solution.

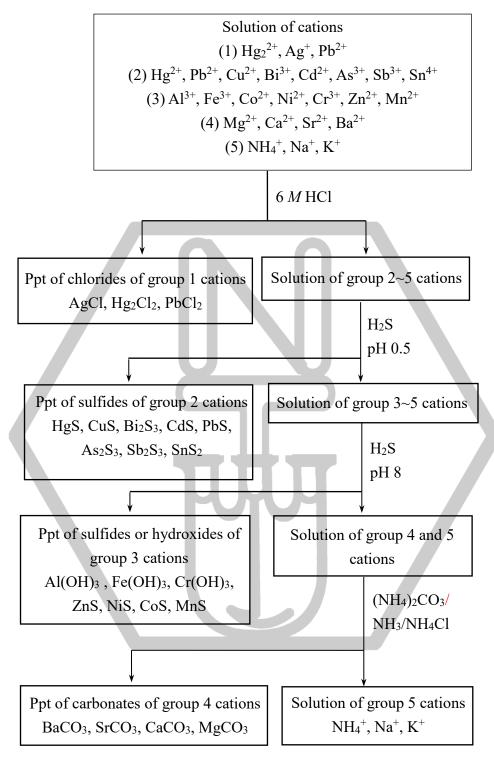
The flow chart 3-1 shows the separation of these cations into 5 groups. The systematic analysis of group 1 cations (flow chart 3-2) will be practiced in this experiment as the following.

II. Systematic separation of group 1 cations

Among the common cations, only Hg_2^{2+} , Ag^+ , and Pb^{2+} may form insoluble chlorides with hydrochloric acid and precipitate out. The solubility of PbCl₂ increases with increasing temperature. Therefore, hot water may extract and separate PbCl₂ from solid Hg_2Cl_2 and AgCl. The Pb²⁺ ions dissolved in hot water can further react with the added K₂CrO₄(aq) to produce a yellow precipitate, indicating its presence, as shown in equation 3-1.

 $Pb^{2+}(aq) + CrO_4^{2-}(aq) \rightarrow PbCrO_4(s)$ (3-1)

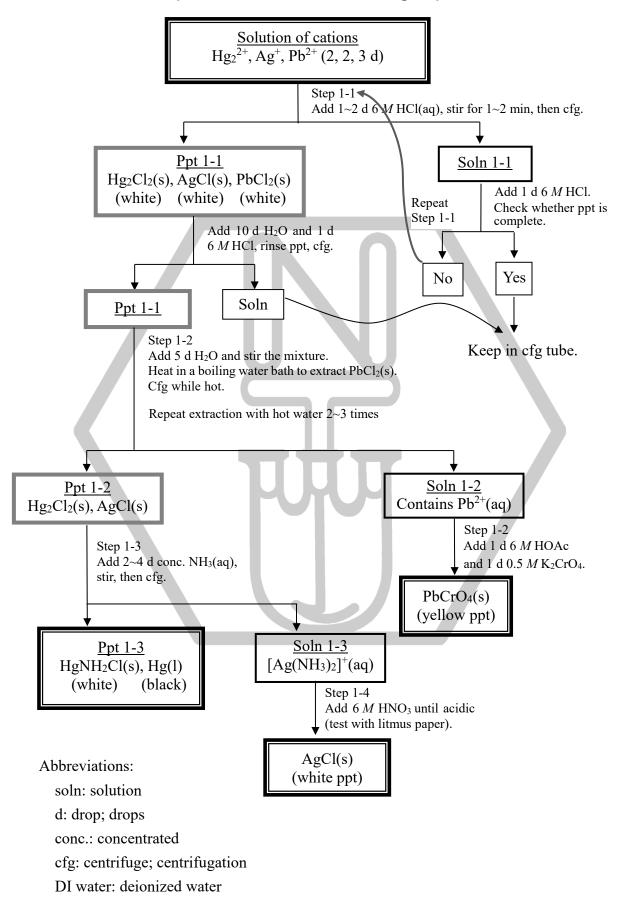

Concentrated ammonia water is then added to the residue containing Hg_2Cl_2 and AgCl precipitates. Hg_2Cl_2 undergoes a disproportionation reaction to form a black mixed precipitate of $HgNH_2Cl(s)$ and Hg(l), indicating the presence of Hg_2^{2+} , as shown


in equation 3-2. On the other hand, AgCl reacts with ammonia water to form $[Ag(NH_3)_2]^+$ complex ion that dissolves, as shown in equation 3-3. After adding enough nitric acid to the solution containing these complex ions to acidify the solution, white AgCl precipitates will appear again, indicating the presence of Ag⁺, as shown in equation 3-4. The Pb²⁺, Hg2²⁺, and Ag⁺ cations are thus separated and identified in sequence.

$$Hg_2Cl_2(s) + 2 NH_3(aq) \rightarrow Hg(l) + HgNH_2Cl(s) + NH_4^+(aq) + Cl^-(aq)$$
(3-2)

$$\operatorname{AgCl}(s) + 2 \operatorname{NH}_{3}(aq) \rightleftharpoons [\operatorname{Ag}(\operatorname{NH}_{3})_{2}]^{+}(aq) + \operatorname{Cl}^{-}(aq)$$
(3-3)

$$[Ag(NH_3)_2]^+(aq) + Cl^-(aq) + 2 HNO_3(aq) \rightleftharpoons AgCl(s) + 2 NH_4NO_3(aq)$$
(3-4)



Flow chart 3-1: Systematic separation of cations into five groups

Abbreviations:

ppt: precipitate; precipitation

Flow chart 3-2: Separation and identification of group 1 cations

Apparatus

Centrifuge, centrifuge tube (5), glass rod, test tube (10), test tube holder, test tube rack, dropper, NBR gloves, and litmus paper.

Shared: stirrer/hot plate, beaker (400 mL), and vortex mixer.

Chemicals

I. Standard cation solutions (10 mg cations/mL)

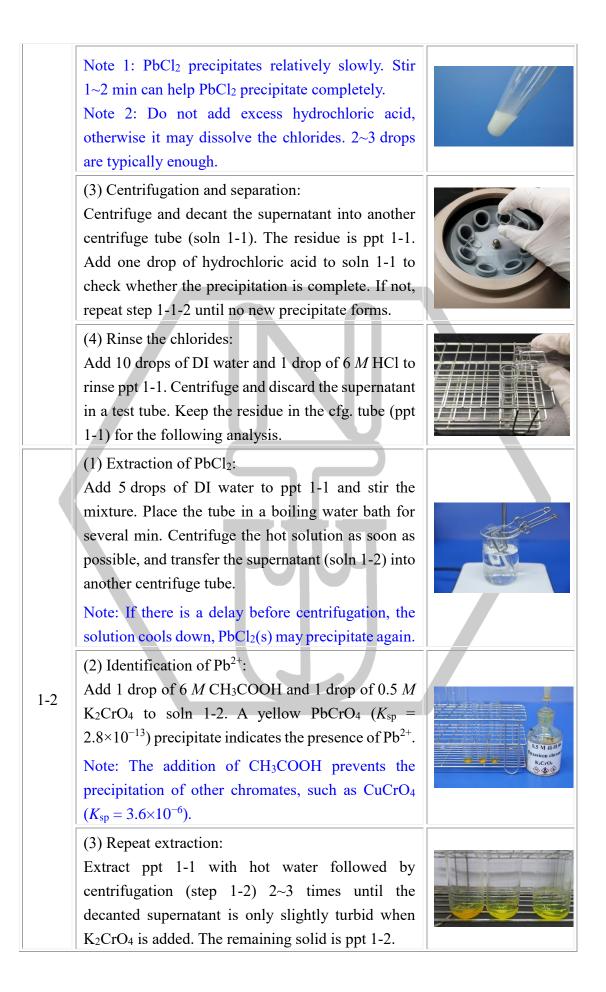
Hg2²⁺: mercury(I) nitrate dihydrate, Hg2(NO3)2·2H2O

Ag⁺: silver nitrate, AgNO₃

Pb²⁺: lead(II) nitrate, Pb(NO₃)₂

II. Test reagents:

6 *M* Hydrochloric acid, HCl(aq)


- 0.5 M Potassium chromate, K₂CrO₄
- 6 *M* Acetic acid, CH₃COOH
- 6 *M* Nitric acid, HNO₃

Concentrated ammonia water, 15 *M* NH₃(aq)

Procedure

- \star Put the NBR gloves on.
- ★ This experiment produces toxic and acidic fumes. All heating should be carried out in the fume hood.
- ★ The precipitate or solution to be discarded during the experiment should be temporarily kept in the tube. After the experiment is completed, it can be collected and poured into the heavy metal waste container.

Step	Procedure	Illustration
1-1	(1) Preparation of a known cation solution: Add 2, 2, and 3 drops of the standard Hg_2^{2+} , Ag^+ , and Pb^{2+} solutions, respectively, to one centrifuge tube.	2 m 2 dr 2 m 3 dr
	(2) Precipitation of chlorides: Add 1 drop of 6 M HCl to the centrifuge tube. Stir for 1~2 min. If precipitation is observed, wait until the precipitate settles and add another drop of 6 M HCl. Examine whether more white precipitate is produced. If a new precipitate is formed, keep adding 6 M HCl drop by drop until no further precipitation is observed.	VORTEX 2

	Note: If Pb ²⁺ is not completely removed, it will affect the results of subsequent tests.	
	 (1) Separation of Hg₂Cl₂ and AgCl: Add 2~4 drops of conc. ammonia water to ppt 1-2. Disperse the precipitate with a glass rod or vortex mixer. 	
1-3	(2) Identification of Hg_2^2+ : Centrifuge, transfer the supernatant (soln 1-3) into a clean test tube, and examine the color of the residue (ppt 1-3). Black residue indicates the presence of $Hg(l)$ and $HgNH_2Cl(s)$ mixture.	
	Note: If ppt 1-2 is not Pb-free, it produces white Pb(OH) ₂ (s) precipitate after adding conc. ammonia water.	$HgNH_2Cl(s) + Hg(l)$
1-4	Identification of Ag^+ : Acidify soln 1-3 by adding 6 <i>M</i> HNO ₃ . Observe any change that occurs. A white precipitate proves the presence of Ag^+ .	
	Note: Mix the solution thoroughly after adding the acid. Use a glass rod to spot the solution on a piece of litmus paper to test the acidity.	
1-5	(1) Keep and present the identification products to the lab instructor when finishing the experiment.	
	 (2) The liquid waste containing heavy metals should be collected and discarded into the recycling container. Brush all glassware and remove labels from test tubes and centrifuge tubes. (3) Wash the apparatus, clean up your benchtop, and complete the experiment. 	

References

1. King, E. J. *Qualitative Analysis and Electrolytic Solutions*; Harcourt, Brace: New York, 1976.