Experiment 17

SYNTHESIS OF SUPERCONDUCTOR

Objective

The purpose of this experiment is to synthesize a high-temperature superconductor, $YBa_2Cu_3O_{7-x}$ ($x \le 0.25$) by solid-state reaction, and investigate its properties.

Lab techniques

- > Operating grinding, hydraulic pressing, and calcination
- Handling of liquid nitrogen
- Weighing chemicals

Introduction

A superconductor exhibits superconductivity, namely zero electrical resistance, and the Meissner effect at the superconducting critical temperature (T_c). The Meissner effect is the exclusion of a magnetic field from a superconductor during its transition to the superconducting state, which could levitate a bar magnet.

In this experiment, yttrium oxide, barium carbonate, and copper oxide are used as starting materials to synthesize $YBa_2Cu_3O_{7-x}$ (abbreviated as Y-123), a superconductor with a T_c at ~95 K, by solid-state reaction. The Y-123 superconductor can levitate a bar magnet at liquid nitrogen temperature (77 K) to show the Meissner effect (Fig. 17-1), which indicates positive superconductivity.

Figure 17-1 Y-123 superconductor levitates a magnet at liquid nitrogen temperature

Apparatus

I. Preparation:

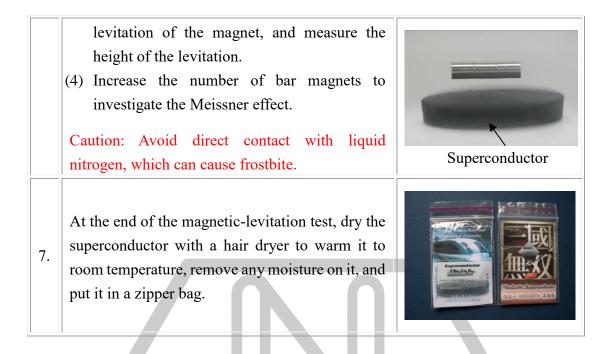
plastic spatula, alumina crucible lid, and face mask (self-prepared).

Shared: electronic balance, agate mortar and pestle, hydraulic press, dies, plastic

tweezers, cellulose sponge, and box furnace.

II. Test:

Shared: plastic tweezers, bar magnet (Nd-Fe-B), petri dish, Dewar flask, cryo-gloves, and hair dryer.


Chemicals

Yttrium oxide, Y₂O₃ Barium carbonate, BaCO₃ Copper(II) oxide, CuO Liquid nitrogen, N₂(l)

Procedure

Procedure			
	Procedure	Illustration	
I. Synthesis of superconductor			
1.	Calculate the stoichiometric amount of Y ₂ O ₃ , BaCO ₃ , and CuO to make the molar ratio of Y : Ba : Cu atoms equal to 1 : 2 : 3 to synthesize 0.004 mol of YBa ₂ Cu ₃ O _{7-x} . Note 1: Include the calculations in the prelab report. Note 2: The high-purity chemicals used in this experiment are very expensive. Avoid wasting.	Y2O3 BaCO3 CuO	
2.	Measure precisely the required amounts of Y ₂ O ₃ , BaCO ₃ , and CuO. Transfer them into an agate mortar. Note 1: Wear a face mask while mixing and grinding powders to avoid inhaling chemical powders. Note 2: The agate mortar is also quite expensive. Handle it with care.		

3.	Use a plastic spatula to mix the staring materials, then grind the chemicals for at least 10 min, until a homogeneous fine powder is obtained. Note 1: Use a plastic spatula to avoid scratching the agate mortar. Note 2: Wash the agate mortar with water and sponge, then dry it with paper tissues after use.			
4.	Transfer the mixed powder to a weighing paper. Use the hydraulic press and dies to press the powder under a pressure of 1 ton·cm ⁻² for 1 min, then a round ingot with diameter of 2 cm and thickness of about 0.3 cm is obtained. Note 1: The pressure should not exceed 1 ton·cm ⁻² to avoid cracking during calcining. Note 2: After use, wash the pressing dies thoroughly with water and sponge to remove powders stuck to its surface and then wipe-dry.			
5.	 Place the sample on an alumina crucible lid with plastic tweezers, and put it into the box furnace. Allow it to calcine at 930°C for 10 h in the air by raising and lowering the temperature at a rate of 5°C·min⁻¹. After cooling down to room temperature, take the product out. Note: Record the position of the crucible to identify your product. No need to label it since it will be carbonized at high temperature. 			
۱. ٦	II. Test of the Meissner effect			
6.	 Place the obtained product in a petri dish, and use plastic tweezers to place one small bar magnet on it to check the interaction. Pour some liquid nitrogen into petri dish, immerse and cool the product. Place one small bar magnet on it, examine the 	Matrice		

References

- 1. She, J. L.; Liu, R. S. J. Chem. Educ., 2008, 85, pp 825-826.
- Wu, M. K.; Ashburn, J. R.; Torng, C. T.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.; Wang, Y. Q.; Chu, C. W. *Phys. Rev. Lett.* **1987**, *58*, 908.
- 3. <u>https://en.wikipedia.org/wiki/Meissner_effect</u> (2024/07/31).