

General Chemistry Laboratory

Heat of Reactions

1

Last revised: 2025/02/06

Preparation

Collect the following items

- Two Styrofoam cups and a plastic lid
- One digital thermometer
- One timer (TA distributed)

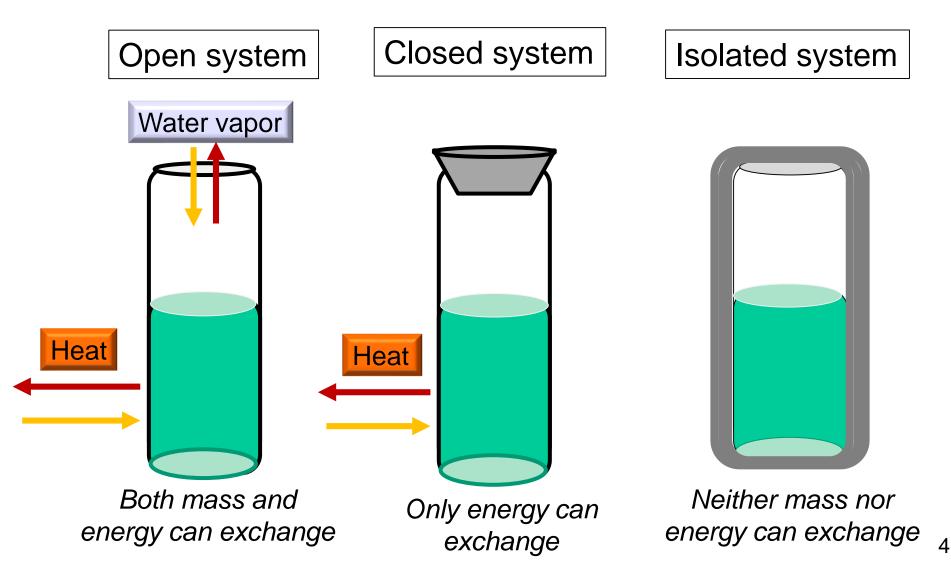
From your personal equipment

- One 400 mL beaker
- One 50 mL graduated cylinder

Note: Reduce the amount of chemicals
✓ 0.10-0.12 g Mg reacts with 50 mL HCI(aq)
✓ 0.3-0.4 g MgO reacts with 50 mL HCI(aq)

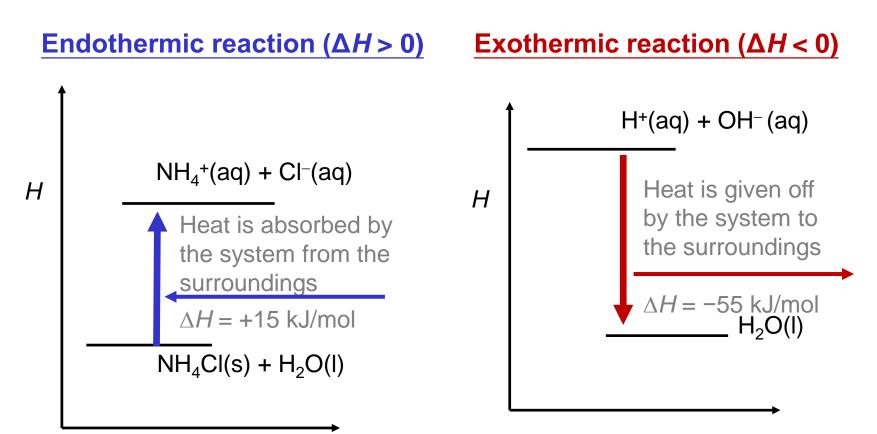
Objective and Principles

• Objective:


- Determine the heat capacity of the home-built calorimeter
- Determine the heat of neutralization (HCI and CH_3COOH) and the heat of solution (NH₄CI)
- Use Hess' law to calculate $\Delta H_{\rm f}$ (enthalpy of formation) of MgO

Lab techniques:

- Operating a simple calorimeter
- Using a graduated cylinder to measure volume
- Using a digital thermometer
- Using the lab dispensers


Reaction System

Enthalpy of Reaction

- At constant pressure, the change in enthalpy during a chemical reaction (*enthalpy of reaction*) equals to the heat gained or lost
- $\Delta H = H(\text{products}) H(\text{reactants}) = q_p$

Constant-Pressure Calorimetry

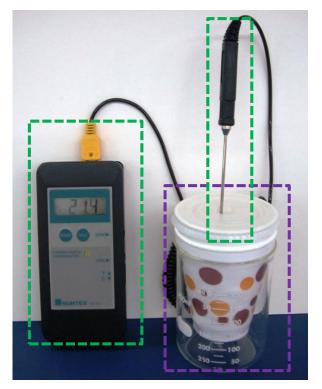
• The simple home-built calorimeter is treated as an isolated system $(q_{sys} = 0)$

> $q_{sys} = q_{rxn} + (q_{soln} + q_{cal}) = 0$ heat transfer heat transfer to to solution the calorimeter

$$\rightarrow q_{\rm rxn} = -(q_{\rm soln} + q_{\rm cal})$$

 $\Box \quad q_{\rm soln} = m \times s \times \Delta T$

m: mass (g), *s*: specific heat (cal/g·°C) ΔT : temperature change (°C)


 $\Box \quad q_{cal} = C_{cal} \times \Delta T$

C_{cal}: heat capacity of calorimeter (cal/°C)

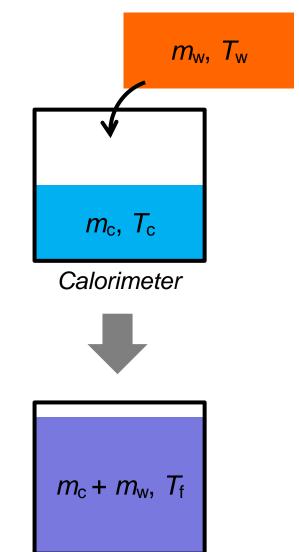
• $\Delta H = q_{rxn} / n$ (molar enthalpy of reaction)

n: number of mole of limiting reagent

Thermometer and probe

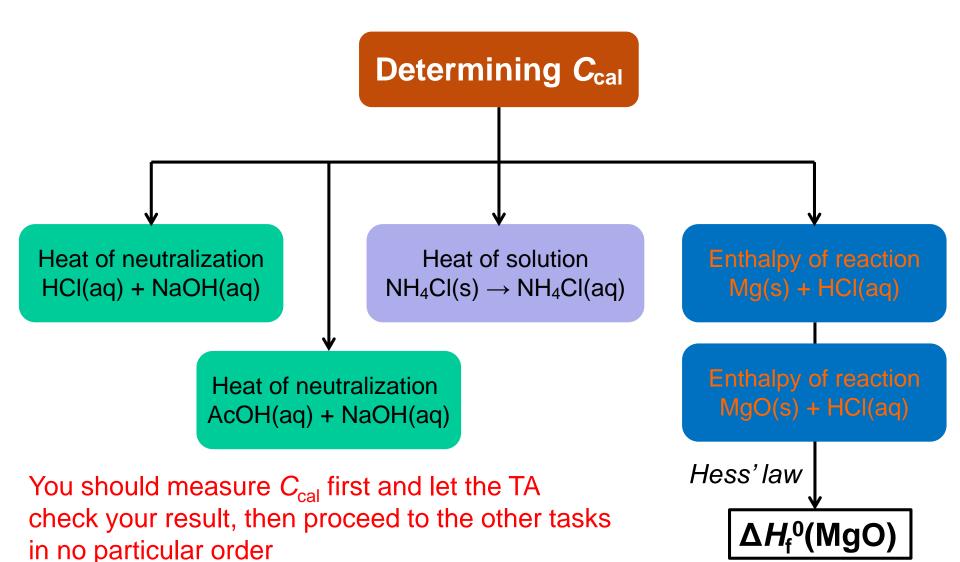
Two Styroform cups and a 400 mL beaker stacked together

How to Determine C_{cal}


- m_w grams of warm water (temperature T_w) is added to m_c grams of cold water (temperature T_c) in a calorimeter
- The final temperature at equilibrum: $T_{\rm f}$
- For an isolated system:

 $0 = q_1$ (heat released by the warm water)

+ q_2 (heat gained by the cold water)


+ q_3 (heat gained by the calorimeter)

- $0 = [m_{w} \times s \times (T_{f} T_{w})] + [m_{c} \times s \times (T_{f} T_{c})] + [C_{cal} \times (T_{f} T_{c})]$
- Measure T_{w} , T_{c} , $T_{f} \rightarrow$ Calculate C_{cal}

Experiment Tasks

Hess' Law

- 1) Mg(s) + 2H⁺(aq) \rightarrow Mg²⁺(aq) + H₂(g) ΔH_1
- 2) MgO(s) + 2H⁺(aq) \rightarrow Mg²⁺(aq) + H₂O(l) ΔH_2
- 3) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$ $\Delta H_3 = \Delta H_f(H_2O) = -285.8 \text{ kJ/mol}$

 $Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s)$

This rxn = (1) - (2) + (3)

 $\Delta H = \Delta H_{\rm f}({\rm MgO})$ $= \Delta H_1 - \Delta H_2 + \Delta H_3$

 ΔH_1 and ΔH_2 are measured experimentally in this lab $\rightarrow \Delta H_f(MgO)$ can then be calculated

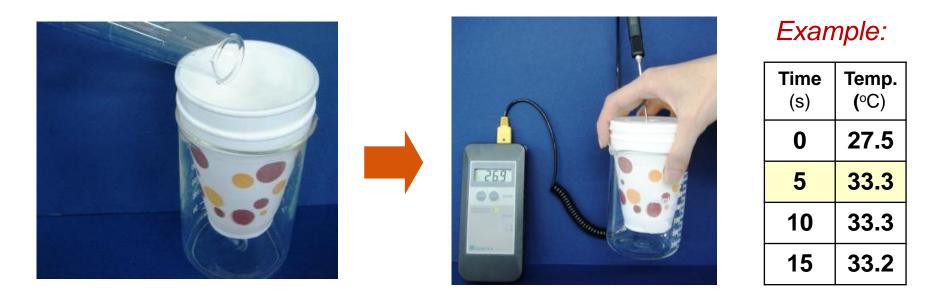
Task 1.1: Determining C_{cal}

- Use a graduated cylinder to measure 50 mL room temperature DI water (use a drop pipet to adjust the liquid level if needed)
- Transfer the water into the calorimeter, close the plastic lid, and insert the thermoprobe
- Wait 1~2 minutes, then record the water temperature

 Place the graduated cylinder away from the bench edge to avoid knocking it over accidentally

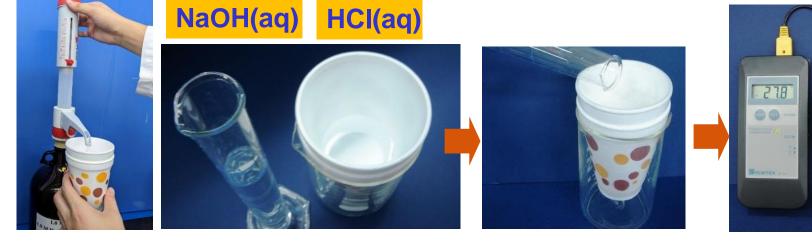
Task 1.2: Determining C_{cal}

- Use a beaker to take some hot water from the fume hood
- Adjust the water temperature with cold water until it is 10~15 °C higher than the cold water


Use the hot water in the fume hood

- Use a graduated cylinder to measure 50 mL of warm water
- Use the thermoprobe to check whether the water temperature is even at different heights
- Record the water temperature in the middle section

Task 1.3: Determining C_{cal}



- Quickly pour the warm water into the calorimeter, then close the plastic lid
- Insert the thermoprobe
- Swirl the calorimeter to mix the water
- Record the temperature readings at a fixed time interval, and find out what the equilibrium temperature is (take the highest reading for exothermic reactions and the lowest point for endothermic reactions)

Task 2: Heat of Neutralization (HCl + NaOH)

HCI(aq)

- Use a lab dispenser to measure 50.0 mL of 1.0 M HCl into the calorimeter, then record its equilibrium temperature
- Use a graduated cylinder to measure 50 mL of 1.0 M NaOH, then record its equilibrium temperature
- Quickly pour NaOH into the calorimeter, close the plastic lid, and insert the thermoprobe
- Mix the solution; record the temperature evolution

Example:

Time (s)	Temp.(°C)
0	27.9
5	32.3
10	33.6
15	33.7
20	33.6

13

Task 3: Heat of Neutralization (AcOH+NaOH)

AcOH(aq)

- Use a lab dispenser to measure 50.0 mL of 1.0 M CH₃COOH into the calorimeter, then record its equilibrium temperature
- Use a graduated cylinder to measure 50 mL of 1.0 M NaOH, then record its equilibrium temperature
- Quickly pour NaOH into the calorimeter, close the plastic lid, and insert the thermoprobe
- Mix the solution; record the temperature evolution

Task 4: Heat of Solution (NH₄Cl)

- Measure 50 mL of DI water into the calorimeter, then record its equilibrium temperature
- Weigh ca. 3 g ammonium chloride (NH₄Cl) and record the exact weight
- Add NH₄Cl(s) to the calorimeter, close the plastic lid and insert the thermoprobe
- Swirl the calorimeter to mix the solution thoroughly, record the time evolution of temperature

Example:

Time (s)	Temp.(°C)
0	27.8
30	24.7
60	24.0
90	24.0
120	24.1

- All solid must be dissolved completely
- Take the lowest temp. reading as the equil. temp

Task 5.1: Enthaply of Reaction (Mg + HCl)

- Measure 50.0 mL of 1.0 M HCI into the calorimeter, then record its equilibrium temperature
- Use analytical balance to weigh ca. 0.1-0.12 g magnesium (Mg) and record the exact weight
- Add Mg(s) into the calorimeter, close the plastic lid, and insert the thermoprobe
- Swirl the calorimeter to mix the solution thoroughly, record the time evolution of temperature

 $Mg(s) + 2H^+(aq) \rightarrow Mg^{2+}(aq) + H_2(g)$

✓ Solid reactants must be mixed and reacted completely

Task 5.2: Enthaply of Reaction (MgO + HCl)

- Measure 50.0 mL of 1.0 M HCl into the calorimeter, then record its equilibrium temperature
- Use analytical balance to weigh ca. 0.3-0.4 g magnesium oxide (MgO) and record the exact weight
- Add MgO(s) into the calorimeter, close the plastic lid, and insert the thermoprobe
- Swirl the calorimeter to mix the solution thoroughly, record the time evolution of temperature

$$MgO(s) + 2H^{+}(aq) \rightarrow Mg^{2+}(aq) + H_2O(I)$$

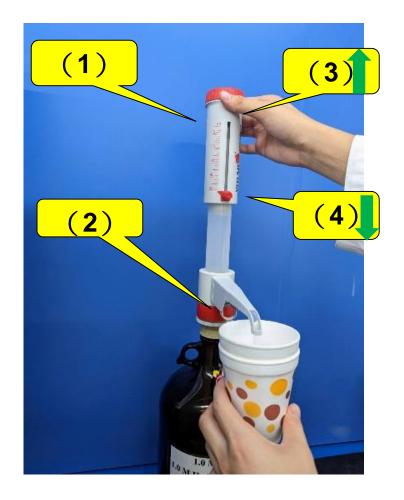
✓ Solid reactants must be mixed and reacted completely

Additional Notes

- The tip of the thermoprobe should be placed in the center of the solution, as it may give an inaccurate reading when touching the container wall
- After measuring the temperature of warm water, rinse the thermoprobe with tap water (so it can cool down) before inserting it into the calorimeter
- The reactions between cold and warm water and acidbase neutralization occur pretty fast, so you should start recording the temperature immediately after mixing
- Wash and dry the Styrofoam cups after each experiment
- Solid reactants (NH₄CI, Mg, MgO) must be reacted completely → observe and note if any solid remains in the calorimeter after each experiment

Additional Notes

- How to determine the equilibrium temperatures:
 - Exothermic reactions: the solution temperature would increase to the highest reading and then start to decrease
 - Endothermic reactions: the solution temperature would decrease to the lowest reading and then start to increase
- ➤ Assume the solution density is identical to that of water (1.0 g/cm³) ← this is an experimental value (two s.f.)
- List calculations in detail in the lab report (including the amount of heat, # moles of reactants, and enthalpy of reactions) -> The unit of heat should be in J or kJ
- > Use correct significant figures and units


Clean-Up and Check-Out

- Salt solutions resulting from acid-base neutralization can be disposed into the sink
- Clean the Styrofoam cups and plastic lid for reuse
- Return the stopwatch to TA
- Clean up the lab bench and check personal equipment inventory (have an associate TA sign the check list)
- This is a **Full Report** experiment:
 - Have the lab notes and results checked by the TA
 - Hand in the report next week
- Groups on duty shall stay and help clean up the lab

Dispenser

- Check the pre-set volume and do not change the volume setting afterwards
- 2. Position the flask under the tip of dispenser
- Lightly pull the piston pump up and down several times to get rid of the bubbles
- Lightly pull piston pump up to the top, then slowly push down to obtain the measured solution

Electronic Balance

Video on YouTube (Click)

- To maintain calibration, the never move balance.
- Do not overload the balance. Maximum load of an electronic balance in lab is usually 610 g.
- Check to see that the balance is level and clean before use.
- Warm up the balance for 30 min before use.

Electronic Balance (s.f. only contains two decimal places)

Analytical Balance (s.f. contains four decimal places)

- Put weighed object in the center of weighing pan. Read digital readout for mass.
- Use folded weighing paper, beaker or bottle as container while weighing. Do not put chemicals on the pan directly.
- Always allow an object that has been heated to return to room temperature before weighing it. The buoyancy of convective airflow around the pan will affect object's apparent mass.
- Keep the balance and its case scrupulously clean. The balance area has a soft brush for this purpose.
- Do not invert balance upside down to avoid damage to the parts inside.
- Analytical balance is an instrument with high precision with maximum load of 210 g. Close its windshields while zeroing and weighing, otherwise the reading is fluctuated and inaccurate. 22