

General Chemistry Laboratory

Synthesis of Acid-Base Indicators

Preparation

Collect the following items

- One test tube tongs
- Two drop pipets
- NBR gloves
- Shared items:
 - Conc. sulfuric acid, phenol and guaiacol (in fume hood)
 - Hot plate, sand bath, digital thermometer (in fume hood)
 - UV light

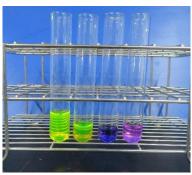
From your personal equipment

- ☐ Five test tubes (clean and oven dry)
- Test tube rack, test tubes, glass rod
- 10 mL graduated cylinder
- 100 and 250 mL beakers

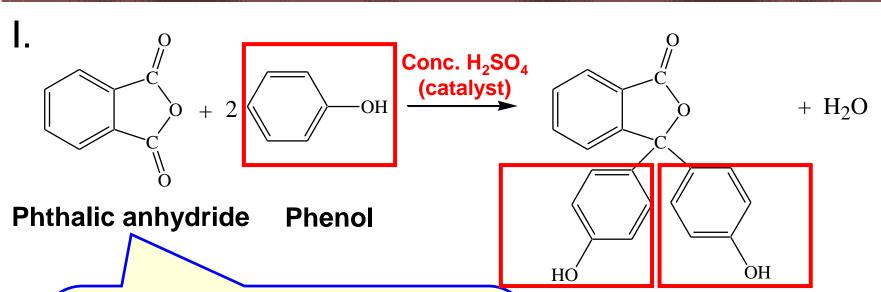
Objective and Lab Techniques

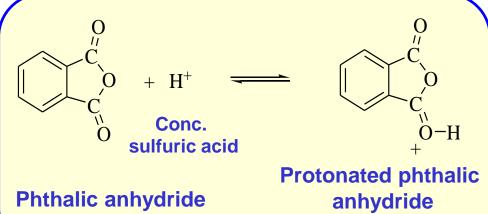
Objective

- Learn the structures, synthesis, and the color change of the acid-base indicator phenolphthalein and its derivatives
- Synthesis of green fluorescent elastomer


Lab techniques

- Using the hot plate, sand bath and Vortex mixer
- Decantation

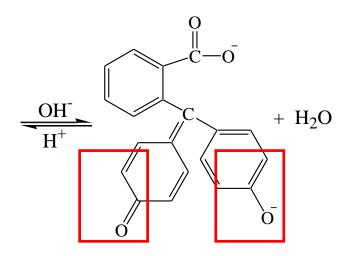




Preparation of Phenolphthalein

(electrophilic)

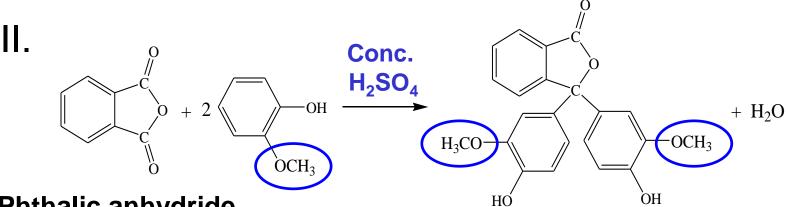
Phenolphthalein



Color Change of Phenolphthalein

Phenolphthalein in acidic soln (colorless)

Phenolphthalein in neutral soln (light yellow)



Phenolphthalein in basic soln (magenta)

Effect of Substituent on Color

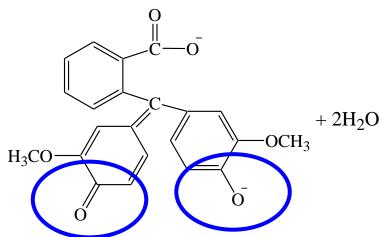
Phthalic anhydride

Guaiacol

Guaiacolphthalein

Phthalic anhydride

Resorcinol


Fluorescein (Resorcinolphthalein)

Color Change Of Guaiacolphthalein

Guaiacolphthalein in acidic soln (colorless)

Guaiacolphthalein in basic soln (blue)

Synthesis of Fluorescein

Phthalic anhydride

(Resorcinolphthalein)

+ 2H₂O

substance

in basic soln

Fluorescent Elastomer

 The chain of polyvinyl alcohol (PVA) can be cross-linked by borate to form an elastomer

Cross-linking with covalent bonding

Cross-linking withhydrogen-bonding

½ spoon

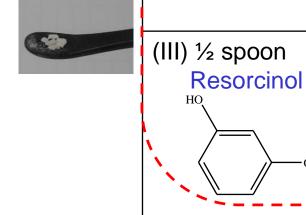
Phthalic

anhydride

Experiment Tasks

Operate in fume hood Product (I) 2 d Phenol Orange Heat and react in sand ОН bath (150~200°C) 5-10 s (II) 2 d Guaiacol 1 d Move out and shake the tube for mixing Conc. ОН H₂SO₄ **Purple** OCH₃ Repeat heating, shaking

and examining the color

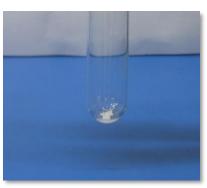

Stop heating when color

change

Dark

10

brown


Experiment Tasks

10000000000000000000000000000000000000	W05500. *********************************		
Product from	Operate in hood	Acid-base test	
(II) Guaiacol	Add 3 mL H ₂ O U Stir and mix Product precipitate out	Add 1 mL 95% ethanol to dissolve the product Add NaOH(ad Add HCI(a	nq)
(III) Resorcinol	Decant the supernatant and get solid product	Observe color change	

Preparation before Synthesis

- Obtain followings in a 250 mL beaker
 - ☐ One dry test tube with ½ spoon phthalic anhydride
 - One test tube with 3 mL H₂O
 - Test tube tongs
 - □ Glass rod
- Wear a cotton glove outside the NBR glove for heating operation

Step 1: Synthesis of Phenolphthalein

Obtain dry test tube

- Add ½ spoon of phthalic anhydride
- Add 2 d phenol and
 1 d conc. sulfuric
 acid

Synthesis

- Keep the temp. of sand bath at 150~200°C
- Insert the test tube in sand bath for 5-10 s
- Move out and gently shake the test tube
- Repeat heating and mixing several times
- Stop heating till color change
- Record color

Add 3 mL DI water

- Stir and mix with glass rod, then product precipitate out
- Decant the supernatant
- Dissolve the solid with 1 mL 95% ethanol

Acid-base test

- Take portions of soln
- Add drops of 1 M NaOH to observe the color change
- Add drops of 1 M HCl to observe the color change
- Record the color change

Step 2: Synthesis of Guaiacolphthalein

Intermittent heating

Add DI water

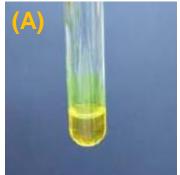
Add EtOH

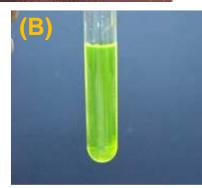
Acid-base test

One dry test tube

- Add ½ spoon of phthalic anhydride
- Add 2 d guaiacol and 1 d conc. sulfuric acid
- Repeat heating in sand bath and mixing alternately to synthesize
- Add 3 mL of water to precipitate the product out and decant the supernatant
- Dissolve ppt in 1 mL 95% ethanol
- Examine the color change with adding NaOH(aq) and HCI(aq)

Step 3.1: Synthesis of Fluorescein




One dry test tube

- Add ½ spoon of phthalic anhydride
- Add 1/2 spoon of resorcinol and 1 d conc. • sulfuric acid
- Repeat heating and mixing to obtain fluorescein

Obtain the product

- Add 3 mL of water to precipitate the product out
- Decant the supernatant
- Take portion of product
- Dissolve with 1 ml 95% ethanol (soln A)

Dilute the solution

- Obtain 2~3 d of soln A into another test tube
- Dilute with 10% ethanol until light yellow (soln B)

- The fluorescein decomposes at 315°C
- Test tube should be moved in-and-out of sand bath to avoid over heating

Step 3.2: Observe Fluorescence

Soln B

- Add drops of 1 M NaOH to soln B
- Observe green fluorescence under UV (examine under long / short wavelength)

UV lamp Three-stage-switch

- Long wavelength, 366 nm
- Off
- Short wavelength, 254 nm

Step 3.3: Fluorescent Elastomer

Highlighter DIY

- Add 3 d fluorescein (soln A) and 2-3 d NaOH(aq) in 100 mL beaker
- Add PVA glue to make a thin film that covers the bottom of beaker
- Mix thoroughly with glass rod and record the color change
- Use a cotton bud to absorb some sticky glue and write on paper

■ Fluorescent elastomer

- Add sodium tetraborate solution drop by drop to the above sticky glue
- Mix thoroughly with glass rod
- Observe the change in viscosity

Additional Notes

- Phenol, conc. sulfuric acid...etc. are corrosive; wear
 NBR gloves and avoid contacting with skin and eyes
- The amount of chemicals used in this experiment does not need to be precise
- Take little amount of reactants to prevent chemical waste which are corrosive and volatile
- Operate heating in the fume hood and avoid burns
- Heat the reactants for ca. 5-10 s., and move out of sand bath alternately to avoid overheating
- Prevent exposing eyes and skin from UV light

Clean-Up and Check-Out

- Dissolve the waste product with 10% alcohol, pour the first rinsed waste liquid into recycling bin then clean with water
- Brush and wash the test tubes thoroughly
- Wash hands after experiment
- Wash the lab coat alone
- Clean up the lab bench and check personal equipment inventory (have an associate TA sign the check list)
- This is a **Brief Report** experiment:
 - Hand in prelab/lab note/report together to the TA
- Groups on duty shall stay and help clean up the lab