

General Chemistry Laboratory

Synthesis and Characterization of Gold Nanoparticles

Preparation

Collect the following items

Apparatus	Amoun	t Apparatus	Amount	
Wash with aqua regia in fume hood:				
25 mL round-bottomed flask	1	Cuvettes	2	
Condenser	1	Stir bar (TA)	1	
Sand bath container	2	Timer (TA)	1	
Three-prong clamp (small)	1	Rubber tube	2	
Three-prong clamp (large)	1	Dropper	1	
NBR gloves	2	2 mL Graduated pipet	Shared	
Cotton gloves	2	10 mL Graduated pipet	Shared	

[✓] Clean the top of hot plate with wet cloth first

Objective and Principles

Objective:

- Use sodium citrate (Na₃C₆H₅O₇) as reducing agent to reduce tetrachloroaurate(III) ion to gold nanoparticles
- Synthesize gold nanoparticles with various sizes
- Measure and compare the surface plasmon resonance (SPR)

spectra

Observe Tyndall effect of gold nanoparticles

Lab techniques:

- Prepare aqua regia
- Use graduated pipet
- Set up reflux system
- Use magnetic stirrer / hot plate
- Operate spectrophotometer

Gold Nanoparticles

- Synthesis of gold nanoparticles (Au-NP)
 - Reduction of tetrachloroaurate(III) ions by sodium citrate:

$$HAuCl_4(aq) + Na_3C_6H_5O_7(aq) \rightarrow Au(s) + CO_2(g) + HCOOH + ...$$

Reducing agent Nano-gold (< 100 nm)

- Control the concentration of citrate (38.8 or 19.4 mM) to prepare Au-NP with various diameters (13 or 24 nm)
- Property of gold nanoparticles
 - Surface plasmon resonance (SPR) spectra
 - Colloids: solute with diameter in 1-1000 nm
 - Tyndall effect: light scattering by colloids

Expected Color, Spectra and Particle Size Analysis (TEM)

(A) 38.8 mM sodium citrate λ_{max} : 520 nm

Diameter: 13 nm (wine red)

(B) 19.4 mM sodium citrate λ_{max} : 525 nm

Diameter: 24 nm (purple red)

Experiment Tasks

- I. Clean up apparatus with aqua regia
- II. Synthesis of gold nanoparticles
- III. Visible absorption spectrum
- IV. Tyndall effect of gold nanoparticles

Step 1: Clean up Apparatus

- Wear NBR gloves
- Operate the followings in fume hood:
 - Mix 5 mL conc. HNO₃ and 15 mL conc.
 HCl in a 100 mL beaker to prepare aqua regia
 - Rinse the stir bar, round bottom flask,
 condenser, and 2 cuvettes with aqua regia
 - Aqua regia can be used repeatedly
- Rinse the apparatus with DI water once
- Back to bench
- Wash off the acids with large amounts of DI water
- Drip-dry the washed apparatus

Step 2.1: Set up Reflux System

- ✓ Wipe the top of hot plate with wet cloth before setting up
- ✓ Electric wires and rubber tubes should not contact the hot plate

- Measure 8.0 mL of Au(III) with graduated pipet to round-bottomed flask
- Fix the round-bottomed flask with smallsized three-prong clamp
- Set round-bottomed flask in the sand bath container and place on the top center of hot plate
- Test the stirring to make sure the stir bar can stir smoothly
- Fix the condenser with large-sized threeprong clamp
- Cooling water:
 - Connect the rubber tubes firmly
 - Run the cooling water from the bottom to the top
 - Adjust the water flow properly
- Lastly, add sea-sand in sand bath container
- Heat the soln after checking by TA

Step 2.2: React with Sodium Citrate

Add citrate

Observe the color change

- Keep stirring on while Au(III)(aq) boils vigorously
- Obtain 1.0 mL of 38.8 mM (odd groups) or 19.4 mM (even groups) of sodium citrate with 2 mL graduated pipet
- Add sodium citrate through condenser all at once
- Observe color change with reaction time

Step 2.3: Synthesis of Gold Nanoparticles

- Keep on heating and stirring until solution boils for 10 min
- Turn off heating, and remove sand bath
- Continue stirring while cooling to room temp
- ✓ Stirring may keep the homogeneity of the size of Au-NP
- Put cotton gloves on when removing the sand bath to prevent burns

Step 5: Prepare Au-NP Sample Solution

- Dilute 2 mL of gold nanoparticle soln with 8 mL DI water as sample soln
- Obtain two cuvettes:
 - One filled with 1/3 the height of sample soln
 - One filled with 1/3 the height of DI water as **blank**
 - * Keep the rest sample soln in the test tube
- Do not brush the cuvettes
- Wipe clean the cuvette with lens tissue while putting into spectrophotometer
- Align cuvettes in fixed direction

Step 6: Absorption Spectrum of Au-NP

Calibration and Measurement

- (1) Turn on power to warm up 15 min
- (2) Empty the cuvette holder
- (3) Set the mode to A
- (4) Set wavelength to 400 nm
- (5) Press [BLANK] to adjust zero
- (6) Place blank soln to cuvette holder
- (7) Press [BLANK] to calibrate
- (8) Place sample soln into cuvette holder and record the absorbance
- (9) Change wavelength (420 nm), repeat (6)~(8) to calibrate and measure the absorbance

 ✓ Repeat calibration while changing the wavelength

- √ 400 ~ 700 nm: measured in 20 nm intervals
- ✓ 500 ~ 540 nm: measured in 5 nm intervals

Step 7: Colloid Property of Au-NP

Left: Right: NaCl(aq) Au-NP soln

After adding NaCl(aq) to Au-NP

Au-NP

- Examine light scattering by diluted Au-NP sample soln in test tube and compare with NaCl(aq)
- Add 1 M NaCl(aq) drop by drop to diluted sample soln
- Observe and record the effect of electrolyte on coagulation of gold nanoparticles and color changes

Clean-up and Check-out

- You may fill some gold nanoparticle solution in a sample vial as souvenir or discard into Au-NP recycling bin
- Recycle aqua regia into specific waste bin after lab
- Wash specific equipment with water and put back in place
- Clean up hot plate, benchtop, and apparatus
- Return the magnetic stir bar, timer, and cuvettes to TA
- Clean up the lab bench and check personal equipment inventory (have an associate TA sign the check list)
- This is a Full Report experiment:
 - Have the lab notes and results checked by the TA, and hand in the report next week
- Groups on duty shall stay and help clean up the lab

Data Sheet & Absorption Spectrum

1			
	λ	(A)	(B)
	(nm)	38.8 mM	19.4 mM
	400	0.574	0.479
	420	0.546	0.455
	440	0.548	0.453
	460	0.562	0.46
	480	0.627	0.513
\dashv	- 500	0.754	0.641
	505	0.798	0.696
	510	0.833	0.742
	515	0.857	0.779
	520	0.857	0.802
	525	0.843	0.804
	530	0.811	0.783
	535	0.761	0.757
	_ 540	0.702	0.713
	560	0.439	0.476
	580	0.273	0.300
	600	0.172	0.186
	620	0.119	0.114
	640	0.087	0.079
	660	0.069	0.059
	680	0.050	0.044
	700	0.048	0.033

Plot using Excel:

- Select columns of wavelength and absorbance
- Insert xy scatter diagram with smooth curve fitting
- Set wavelength as *x* axis, absorbance as *y* axis
- Indicate λ_{max}

T2 – Stirrer/Hot Plate

- Connect the stirre/hot plate to a grounded 110 V power outlet (replace damaged power cord and plug immediately)
- Keep power cord away from the ceramic heating top
- Clean the heating top with non-corrosive detergent after use or when liquid spills
- NEVER heat a large amount of volatile and flammable liquid (e.g. ether, acetone) directly on the hot plate
- If the stirring bar jumps erratically, turn the stirring function off and adjust the vessel position, then restart the stirring
- Do not remove the stirring bar from solution with hand instead use a Teflon-coated magnetic rod ("fishing pole")

T12.1 – Transfer (Volumetric) Pipet

- Clean the pipet and rinse it twice with small amount of the liquid to be transferred
- Press valve A of the pipet filler and simultaneously squeeze the bulb to expel air from it, then insert the top of pipet gently into the pipet filler
- Bring the pipet tip below the liquid surface, press valve S to draw liquid until it rises above the inscribed line
- Remove the pipet filler and quicky use an index finger to close the top of pipet
- Use finger to adjust the liquid level to the inscribed line. Wipe off any excess liquid near the pipet tip
- Use the other hand to hold the new container.
 Maintain the pipet in a vertical position and let its tip touch the inner wall of the container. Release the index finger so that liquid is transferred
- Do not force out any liquid remaining at the tip
- Wash the pipet thoroughly after use

T17 – Spectrophotometer

- Turn on the power switch and let the instrument warm up for at least 20 minutes
- Ensure the cuvette holder is empty
- Press the "Mode" button several times until "A" (absorbance) appears on the screen
- Set the wavelength to the desired value (e.g. 620 nm)
- Press the "Blank" button to zero the reading
- Place a cuvette with blank solution into the cuvette holder. Align the white line on the cuvette toward you (do NOT use regular test tubes in the spectrophotometer)
- Press the "Blank" button to calibrate
- Place a sample solution into cuvette holder
- Close the lid of the sampel compartment, record the absorbance reading

