

General Chemistry Laboratory

Organic Molecular Modeling

Prelab Preparation

- Lab coat and goggle are not necessary
- Self-prepared digital camera, smartphone, laptop
- Complete the data sheet in your pre-lab report, each one shall include
 - Hand-draw structural formula
- Download Avogadro and Chemsketch free software beforehand (optional)
- ✓ Tutorial for Chemsketch: <u>http://www.youtube.com/watch?v=5kaU5iEqifQ</u>
- Tutorial for Avogadro: <u>http://www.youtube.com/watch?v=ohdMhGaaP68</u>
 Calculate bond-angle, bond-length, and bond energy

Smartphone App (Optional)

- 1. Add main atoms
- 2. Add bonds
- 3. Add hydrogen
- 4. Shaping

C₄H₈ / 56.108, atoms 12, bonds 11 You can rotate the view to see the double bond better. Now select Tools -> Add hydrogens Energy: 1.043985 Max fluctuation: 0.25

Preparation

Collect and check MOLYMOD organic set contents

- White ball: 20
- Black ball: 12
- Red ball: 6
- Blue ball: 4
- Green ball: 4
- Yellow ball: 2
- Grey ball: 1
- Purple ball: 1
- Short white link: 26 / 10.13 g
- Medium grey link: 26 / 23.11 g
- Long grey link: 12 / 9.95 g
- Link remover: 1

- Construct and learn spatial arrangements of organic molecules
- Use MOLYMOD[®] organic set to build ball-and-stick model and observe the conformers and isomers
- Use free software Chemsketch and Avogadro to sketch the structural formulas (optional)

Molecular Geometry

Lewis structure

Ball-and-stick

Space-filling

Wedge-and-dash

Η

H

MOLYMOD® Organic Set

Single Multiple bond bond

CPK coloring

Link remover

Newman Projection

Newman Projection

Conformation

Conformation

Differs by rotations about single bonds

Staggered, lower energy

More stable

Eclipsed, higher energy

<mark>_0°</mark> HH

Η

Η

Conformation

Chair form and boat form of cyclohexane, C₆H₁₂

Diastereomers

- *cis, trans*-isomers
 - C=C double bond cannot rotate
 - Molecule with C=C double bond or ring structure
 - cis: on the same side
 - trans: on the other side

Enantiomers

- Chiral carbon: Carbon with four different substituents, labeled as C*
- Enantiomers: One of a pair of molecular entities which are mirror images of each other and non-superposable (IUPAC)

- Enantiomers could rotate plane-polarized light with same angle but different direction
 - Rotate clockwise, i.e. dextrorotatory, denoted as (+) or d-
 - Rotate counterclockwise, i.e. levorotatory, denoted as (-) or I-

- 1. Light resource
- 2. Unpolarized light
- 3. Linear polarizer
- 4. Linear polarized light
- 5. Sample (enantiomer)
- 6. Rotated polarized light
- 7. Rotatable linear polarizer
- 8. Detector

Priority rules:

Higher atomic number with higher priority (assign 1)

14

Compare the Enantiomers

Assemble the molecules
 Determine the *R*- or *S*- configurations
 Compare and take picture

Experiment Tasks

MOLYMOD organic set MOLYMOD ball-and-stick model

- Draw structural formulas (pre-lab report)
- Check the contents in the box
- Construct ball-and-stick model
- Compare and take picture
- After lab, recheck the contents in the box

Eclipsed

S

Staggered

R

Additional Notes

- Using a selfie camera will get you a mirror image
- Before uploading your e-report to NTUCOOL, check the followings:
 - □ Systematic name in Chinese and English (IUPAC)

□ The pictures (in the most stable form)

- Avogadro (for correction)
- □ Save as pdf format

https://teaching.ch.ntu.edu.tw/gclab/en/announcements.html

Clean-Up and Check-Out

- Use link remover to disassemble the white short link to prevent damaging the links
- Clean up the lab bench and check the contents of MOLYMOD set (have an associate TA sign the check list)
- This is a **Full Report** experiment:
 - Results checked by the TA, and upload e-table
- Groups on duty shall stay and help clean up the lab

