

電位滴定法一鹽酸與碳酸鈉

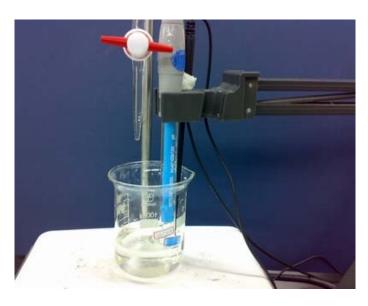
2016/03/12修訂

>領取專用器材:

項目	數量	項目	數量
250 mL 容量瓶	1	pH 7, 10 標準緩衝溶液	共用
50 mL 滴定管	1	10 mL刻度吸量管	共用
125 mL 錐形瓶	2	面紙	2
玻璃滴管	2	攪拌子(助理助教收發)	1

▶準備個人器材:

- 小漏斗、洗瓶
- 100 mL 燒杯 2 個、洗瓶、250 mL 燒杯

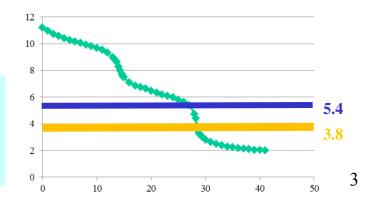

目的與技能

目的:

- ◆ 配製鹽酸溶液
- ◆ 標定鹽酸溶液
- ◆ 以電位滴定法決定碳酸鈉滴定之當量點
- ◆ 測定碳酸之酸解離常數

技能:

- ◆ 分析天平
- ◆ 容量瓶
- ◆ 滴定
- ◆ 電磁加熱攪拌器
- ◆ 酸鹼度測定計
- ◆ 作圖決定當量點

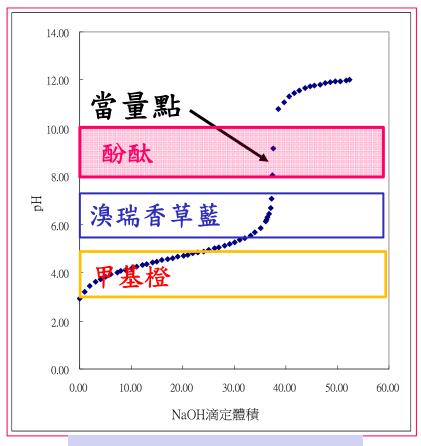

鹽酸之標定

■以Na₂CO₃為一級標準鹼標定0.1 M HCl

$$HCl_{(aq)} + CO_3^{2-}_{(aq)} \rightarrow HCO_3^{-}_{(aq)} + NaCl_{(aq)}$$

 $HCl_{(aq)} + HCO_3^{-}_{(aq)} \rightarrow H_2CO_3_{(aq)} + NaCl_{(aq)}$

■指示劑: 溴甲酚綠藍色(pH 5.4) → 綠色 → 黃色(pH 3.8)


mole of Na₂CO₃ =
$$\frac{V_{\text{HCI}} \times M_{\text{HCI}}}{2}$$

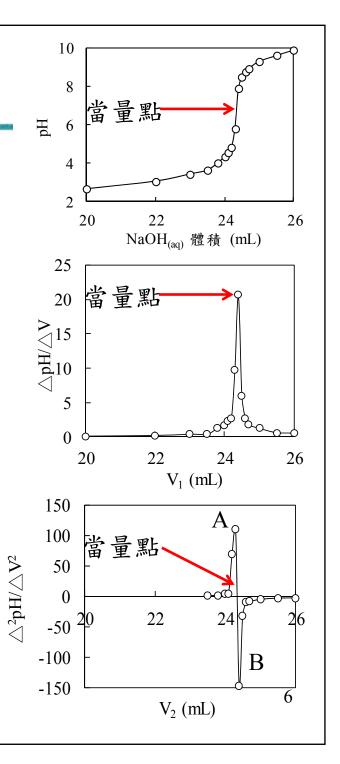
酸鹼中和當量點之決定

- 接近當量點時,pH值變化非常顯著
- 由測量pH值變化或指示劑顏色變化作判定

指示劑	示劑 酸式 變色 顏色 pH		鹼式 顏色
甲基橙	紅	3~4	橙
溴瑞香 草藍	典	6~7	藍
酚酞	無色	8~10	紫紅

弱酸強鹼滴定曲線

電位滴定法決定當量點


- 每滴加一次試劑測量記錄電位(pH)讀數
- 利用電位隨滴定劑 (titrant) 體積之變化曲線以決定當量點
- 決定當量點的方法有三種:
 - 1. 酸鹼滴定曲線
 - 2. 一次微分曲線
 - 3. 二次微分曲線

作圖決定當量點

- 1. 酸鹼滴定曲線
- 曲線中斜率最大的點即當量點
- 2. 一次微分曲線
- 曲線最大值即是當量點

- 3. 二次微分曲線
- 圖中A、B點所連直線之 X 截距

弱酸之酸解離常數

半當量點(half-equivalence point):

■ 弱酸強鹼中和反應:

$$HA(aq) + OH^{-}(aq) \rightarrow H_2O(l) + A^{-}(aq)$$

■ 半當量點時,溶液中[HA]=[A-]

$$K_a = \frac{\left[A^{-}\right]\left[H_3O^{+}\right]}{\left[HA\right]}$$

則
$$[H_3O^+]=K_a$$

故半當量點之pH=pKa

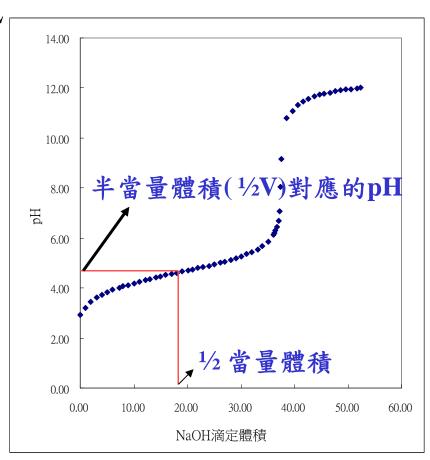
弱酸之酸解離常數測定範例

例如:

當量體積 (V) = 37.50 mL

半當量體積 = 18.75 mL

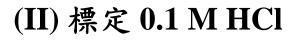
$$V = 18.00$$
 $pH = 4.60$


$$V = 19.10$$
 $pH = 4.65$

半當量體積所對應的

$$pH值 = pK_a = 4.63$$

$$K_a = 2.3 \times 10^{-5}$$


弱酸-強鹼滴定曲線

實驗流程

(I) 配製標準酸 0.1 M HCl

(III) 電位滴定 HCl滴定Na₂CO₃





流程 I: 配製標準酸

6 M HCl

?

4.17 mL

0.1 M HCl 250 mL

250 mL 炼杯

- 稀釋酸 將濃酸加入水中
- ■容量瓶先裝部分水
 - →加入定量酸後
 - →再加水至標線
 - →蓋上瓶塞
 - →上下倒置混合均匀

流程II:標定0.1 M HCl

- 分析天平精稱 0.1~0.2 g Na₂CO₃ 置於125 mL錐形瓶
- 加 30 mL去離子水溶解Na₂CO₃
- 加 3滴溴甲酚綠
- 滴定Na₂CO₃(aq)至綠色
- 將溶液煮沸2~3分鐘,溶液轉為藍色 (使用攪拌子攪拌以避免溶液突沸)
- 待溶液冷卻後繼續滴定至黃色
- 記錄V_i 及 V_f至 0.01 mL
- 進行二重覆滴定

藍色→ 綠色 →

0.1~0.2 g Na₂CO₃±0.0001 g 30 mL H₂O 3滴溴甲酚綠 以0.1 M HCI 滴定

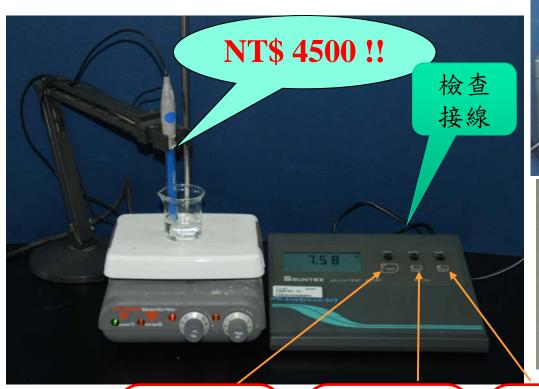
注意:滴定時以逐滴方式進行,以免滴定過量

滴定注意事項

■ 滴定注意事項

- 以約5 mL溶液潤洗2次
- 經漏斗加裝溶液
- 整支滴定管均應充滿溶液不可有氣泡
- 記錄滴定管初體積 (V_i) 與終體積 (V_f) 至 $0.01 \, mL$
- 慣用手搖瓶,非慣用手反扣控制活栓
- 滴定到溶液由藍變綠色
 - →煮沸趕除H₂CO₃變藍色
 - →冷卻後續滴至黃色

藍色


→ 綠台

→ 黄色12

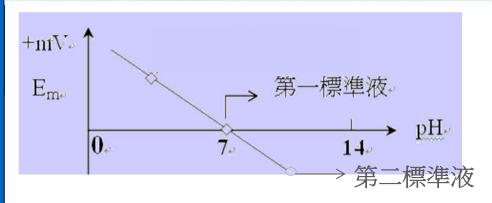
流程III:熱機與校正pH計

酸鹼度測定計裝置圖

POWER

暖機10分鐘

MODE

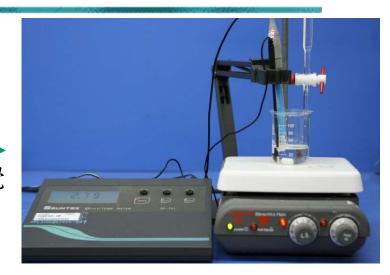

切換至溫度 確認溫度正常

HOLD

清洗電極或電極暫時不用時按壓以鎖住顯示幕

校正pH計

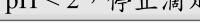
旋轉Calib鈕,至顯示「7.00」→ 旋轉 Slope 鈕至顯示「10.00」



流程III: 0.1 M HCl滴定碳酸鈉

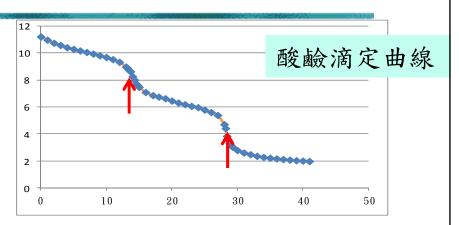
- 以吸量管準確量取 10.0 mL 未知濃度 Na₂CO₃ 液
- 置於100 mL 燒杯中
- 加30 mL去離水
- 3 d. 廣用指示劑

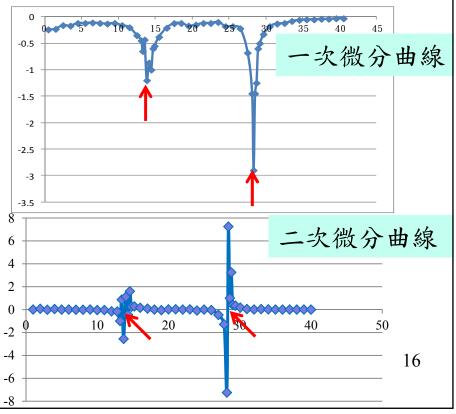
架設裝置


電極、測溫棒及攪 拌子均浸於溶液

NT\$ 1000 !!

- 以0.1 M HCl 滴定碳酸鈉溶液
- 每加 1.0 mL, 讀記V_f, pH值及顏色
- pH 9~7 及 5~3 時,改滴加 0.20 mL
- pH < 2, 停止滴定





實驗計算與作圖

0.1 MHCl滴定未知Na₂CO₃

- 作3圖及其當量點
- 計算碳酸鈉濃度
- 由滴定曲線之半當量 點,定碳酸之K_{a1}及K_{a2}

數據處理
$$V_1 = \frac{(9.00 + 10.00)}{2} = 9.50$$

$$V_2 = \frac{(9.50 + 10.50)}{2} = 10.00$$

		文微分		二次微分	
V _{HCI}	рН	V ₁	ΔρΗ/ΔV	V ₂	$\Delta(\Delta pH/\Delta V)/\Delta V_1$
9.00	9.80	9.50	-0.12	10.00	-0.04
10.00	9.68	10.50	-0.16	11.00	-0.04
11.00	9.52	11.50	-0.2	12.00	-0.15
12.00	9.32	12.50	-0.35	12.80	-0.166
13.00	8.97	13.10	-0.45	13.20	-1
13.20	8.88	13.30	-0.65	13.43	0.866
13.40	8.75	13.55	-0.433	13.70	-2.555
13.70	8.62	13.85	-1.2	14.00	1.111
14.00	8.26	14.15	-0.866	14.30	-0.444
14.30	8.00	14.45	-1	14.58	1.6
14.60	7.70	14.70	-0.6	14.80	0.25
14.80	7.58	14.90	-0.55	15.20	0.283

實驗完成

- 清洗pH電極,套入含3MKCl之電極套
- ■關閉pH計及詞加熱攪拌器電源
- 交還攪拌子(助理助教登記)
- 清洗滴定管,放回50 mL紙箱
- 酸鹼廢液經中和/稀釋後,直接排放水槽

